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Abstract 

The present work highlights the synthesis and effect of introducing substituents on the nitrogen at position -1 of five 2-
benzylthiopyrimidine derivatives (6a-e). The compounds (6a-e) were obtained by condensation of 2-thiopyrimidines 
(4) with benzyl halides in the presence of a base. As for the N-alkylated/arylated-2thiobenzylpyrimidines (8a-k), they 
were obtained by nucleophilic substitution reaction on nitrogen in basic medium. All the synthesized compounds were 
characterized by 1H proton, 13C carbon NMR spectroscopic analyses and high resolution mass spectrometry. All 
compounds were subjected to antibacterial testing on two multidrug resistant strains of Escherichia coli and 
Staphylococcus aureus. The results revealed that compounds 6a, 6b, 6c, 6d and 6e showed no minimum inhibitory 
concentration on either E. coli or S. aureus. However, compounds 8b, 8c, 8d and 8f showed a MIC on S. aureus1174. As 
for the bacterial strain E. coli 1178, only compound 8h showed a minimum inhibitory concentration. N-
alkylation/arylation enhanced the antibacterial effect of some 2-benzylthiopyrimidine derivatives. 
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1. Introduction

Bacterial infections are nowadays considered as a major public health threat, certainly because of the resistance of 
bacteria to antibiotics [1, 2]. In response to this major public health problem, our study focused on the pyrimidine ring. 
Derivatives of 3, 4-dihydropyrimidines have received much attention from many chemists due to their wide range of 
therapeutic and pharmacological properties, such as antiviral [3], antitumoral, antibacterial and antifungal [4], anti-
inflammatory [5]. Studies have shown that several dihydropyrimidine-containing alkaloids such as batzelladine 
alkaloids, have been shown to be potent inhibitors of HIVgp-120-CD4 [6, 7]. More recently, beginelli compounds have 
been classified as calcium channel blockers [8, 9], antioxidant molecules [10] and radical scavengers [11-12]. The work 
of some authors such as Barbosa et al. showed that dihydropyrimidines substituted on the nitrogen were recognized as 
very effective for the treatment of Alzheimer's disease [13]. The importance of these compounds has led chemists to 
propose methods of synthesis. It is in this sense that Dallinger and Kappe synthesized N-alkylated dihydropyrimidine 
derivatives by Mitsunobu reaction [14]. As for Singh et al. they proposed a method of N-alkylation catalyzed by an 
inorganic strong base [15]. In this work, N-alkylated compounds were synthesized by treating 2-benzylpyrimidine 
derivatives in the presence of potassium carbonate. After obtaining these compounds, the influence of the introduction 
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of substituents on the nitrogen of 2-benzylthiopyrimidine derivatives was studied by determining the antibacterial 
parameters (MIC and MBC) on two multidrug resistant strains of E. coli and S. aureus. 

2. Material and methods 

2.1 Materials  

2.1.1 Materials of chemistry 

Unless otherwise indicated, 1H and 13C NMR spectra were recorded at 300 and 75MHz or 400 and 101 MHz or 600 and 
151MHz, respectively, in CDCl3, DMSO and Acetone solutions. Chemical shifts are reported in ppm on the δ scale. 
Multiplicities are described as s (singulet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet), m (multiplet) and 
further qualified as app (apparent), br (broad) coupling constants, J are reported in Hz. HRMS were measured in the 
electrospray (ESI) mode on a LC-MSD TOF mass analyser. 

2.1.2 Materials of Biology 

Microbial strains 

The microbial support is composed of clinical strains of E. coli (Gram negative bacteria) and S. aureus (Gram positive 
bacteria). These strains were provided by the Laboratoire National de la Santé Publique (LNSP) of Cote d’Ivoire. These 
strains are all pathogenic and multi-resistant. S. aureus strains are resistant to: Amoxicillin, Ampicillin, Oxacillin, 
Ceftazidine, Fosfomycin, Vancomycin and Cefsulodine and those of E. coli, are all resistant to: Amoxicillin, Ampicillin, 
Ceftriazone, Fosfomycin, Cefsulodine. The culture media used are: Mueller-Hinton broth (Oxoid) and Mueller-Hinton 
agar (Lab.Conda s.a). The synthetic products are composed of eight 2-thiopyrimidine derivatives (6a-e) and (8a-k). The 
solvents used for solubilization of the chemicals were dimethylsulfoxide (DMSO) and distilled water. 

2.2 Methods 

2.2.1 Methods of chemistry 

Method of synthesis of compounds 4a and 4b 

12.5 mmol of thiourea, 13 mmol of benzaldehyde and 19 mmol of ethyl acetoacetate were dissolved in 10 mL of 
anhydrous ethanol and then ten drops of concentrated hydrochloric acid (37%) were added. The reaction mixture was 
stirred under reflux in ethanol for 2 h. After that time the reaction was quenched by addition of ice water. The resulting 
white precipitate obtained which was filtered and then washed with cold ethanol. The crystals obtained were purified 
by recrystallization in ethanol. General procedure for the synthesis of compounds 6a-l 1 mmol of the 2-thiopyrimidine 
derivative was dissolved in 10 mL of dimethylformamide (DMF), then 1.5 mmol of potassium carbonate (K2CO3) were 
added. The reaction was stirred at room temperature and then 1.3 mmol of substituted benzyl chloride or bromide were 
added dropwise. From 2 h to overnight, the reaction mixture was neutralized with a dilute solution of HCl (2 M). The 
precipitate formed was filtered and purified by silica gel chromatography with a mixture of ethyl acetate/ hexane. 
Compounds 6a-l was obtained with yields between 50% to 94% yields. 

General procedure for the synthesis of N-alkyl 2-thiobenzylpyrimidines derivatives 8a-k 

To a solution of 2-benzylsulfanyl-pyrimidine (1 eq, 0.55 mmol) in 5 mL of dimethylformamide (DMF), potassium 
carbonate (K2CO3) was added (6 eq, 3.3 mmol). The mixture was stirred at room temperature for 1 hour, then benzyl / 
ethyl chloride or bromide (4eq, 2.2 mmol) were added dropwise and the reaction mixture was heated to 70 °C. At the 
end of the reaction, the mixture was cooled to room temperature, neutralized with a dilute solution of HCl (2M). The 
precipitate formed was filtered, dried and purified by silica column chromatography to give compounds 3a-k. 

2.3 Products characterizations  

2.3.1 Ethyl 2-(benzylthio)-6-methyl-4-phenyl-1, 4-dihydropyrimidine-5-carboxylate 6a  

Yield = 62%. 1H NMR (300 MHz, CDCl3) δ (ppm) 11.20 (s, 1H, NH), 7.36 -6.93 (m, 10H, HAr), 5.82 (s, 1H, CH), 4.91 (d, Jab 
= 13.4 Hz, 1Ha, S-CH2), 4.28 (d, Jba = 13.4 Hz, 1Hb, S-CH2), 4.22 - 3.82 (m, 2H, O-CH2), 2.57 (s, 3H, CH3), 1.14 (t, J = 7.1 Hz, 
3H, CH3).; 13C NMR (75 MHz, CDCl3) δ (ppm): 164.01, 161.00, 142.95, 139.64, 132.94, 129.10, 129.03, 128.98, 128.51, 
127.28, 106.20, 61.05, 54.71, 37.34, 17.28, 13.90; HRMS (ESI): Calc for C21H23N2O2S (M+H)+: 367.1576. Found: 
367.1570. 
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2.3.2 Ethyl 2-((4-chlorobenzyl) thio)-6-methyl-4-phenyl-1, 4-dihydropyrimidine-5-carboxylate 6b  

Yield = 94%; 1H NMR (300 MHz, DMSO-d6) δ (ppm) 7.56 - 6.89 (m, 9H, HAr), 5.59 (s, 1H, CH), 4.90 (d, Jab = 16.3 Hz, 1Ha, 
S-CH2), 4.38 (d, Jba = 16.3 Hz, 1Hb, S-CH2), 4.10 - 3.99 (m, 2H, CH2-O), 2.38 (s, 3H, CH3), 1.08 (t, J = 7.1 Hz, 3H, CH3); 13C 
NMR (75 MHz, DMSO-d6) δ (ppm) 164.55, 144.31, 140.62, 135.11, 132.87, 130.96, 129.33, 128.92, 127.24, 104.89, 
60.97, 54.98, 34.66, 17.42, 14.30; HRMS (ESI): Calc for C21H22ClN2O2S (M+H)+: 401.1017. Found: 401.1015. 

2.3.3 Ethyl 2-(benzylthio)-6-methyl-4-(p-tolyl)-1, 4-dihydropyrimidine-5-carboxylate 6c  

Yield = 51%, 1 H NMR (300 MHz, CDCl3) δ (ppm) 7.50 - 6.67 (m, 9H, HAr), 5.68 (s, 1H, CH), 4.36 (d, Jab = 13.4 Hz, 1Ha, S-
CH2), 4.13 - 4.09 (m, 3H, Hb, CH2-O), 2.33 (s, 6H, 2 CH3), 1.23 (t, J = 7.1 Hz, 3H, CH3); 13C NMR (75 MHz, CDCl3) δ (ppm) 
167.02, 160.03, 146.63, 134.56, 129.36, 129.24, 128.93, 119.51, 112.52, 60.07, 54.71, 35.04, 21.29, 14.29.; HRMS(ESI): 
Calc for C22H25N2O2S (M+H)+: 381.1839. Found: 381.1842.  

2.3.4 Ethyl 2-((4-chlorobenzyl) thio)-6-methyl-4-(p-tolyl)-1, 4-dihydropyrimidine-5-carboxylate 6d  

Yield = 75%, 1 H NMR (300 MHz, CDCl3) δ (ppm) 7.26 - 7.04 (m, 8H, HAr), 5.63 (s, 1H, -CH), 4.36 (d, Jab = 13.6 Hz, 1Ha, S-
CH2), 4.13 (d, Jba = 13.6 Hz, 1H, S-CH2), 4.10 - 4.00 (m, 2H, CH2-0), 2.36 (s, 6H, 2 CH3), 1.22 (t, J = 7.1 Hz, 3H, CH3); 13C 
NMR (75 MHz, CDCl3) δ (ppm) 167.04, 141.98, 136.26, 133.22, 130.37, 129.10, 128.54, 126.91, 60.06, 34.38, 21.28, 
14.26.; HRMS(ESI): Calc for C22H23ClN2NaO2S (M+Na)+: 437.0923. Found: 437.0920. 

2.3.5 Ethyl 2-((4-(methoxycarbonyl) benzyl) thio)-6-methyl-4-(p-tolyl)-1, 4-dihydropyrimidine-5-carboxylate 6e 

 Yield = 55%, 1H NMR (300 MHz, CDCl3) δ (ppm) 11.26 (s, 1H, NH), 7.66 (d, J = 8.0 Hz, 2H, HAr), 7.40 - 7.20 (m, 2H, HAr), 
7.07 (d, J = 8.0 Hz, 2H, HAr), 6.98 (d, J = 7.9 Hz, 2H, HAr), 5.77 (s, 1H, -CH-), 5.22 (d, Jab = 14.3 Hz, 1Ha, S-CH2), 4.21 (d, Jba 
= 14.3 Hz, 1Hb, S-CH2), 4.13 - 3.98 (m, 2H, CH2-O), 3.92 (s, 3H, CH3-O), 2.59 (s, 3H, CH3), 2.29 (s, 3H, CH3), 1.13 (t, J = 7.1 
Hz, 3H, CH3); 13C NMR (75 MHz, CDCl3) δ (ppm) 166.23, 163.82, 160.47, 142.69, 139.13, 138.51, 136.31, 129.93, 129.82, 
129.70, 128.93, 127.14, 106.46, 61.13, 54.65, 52.19, 36.40, 21.09, 17.31, 14.02; HRMS (ESI): Calc for C24H27N2O4S 
(M+H)+: 439.1232. Found: 439.1229. 

2.3.6 Ethyl 1-benzyl-2-((4-chlorobenzyl) sulfanyl)-6-methyl-4-phenyl-1, 4-dihydropyrimidine-5- carboxylate 8a 

Yield = 55 %, 1H NMR (300 MHz, CDCl3) δ (ppm) 7.40 – 7.21 (m, 12H, HAr), 7.11 (dd, J = 13.4, 8.4 Hz, 2H; HAr), 5.17 (s, 1H, 
CH), 4.84 (d, J = 16.1 Hz, 1H, N-CH2), 4.49 (d, J = 13.7 Hz, 1H, S-CH2a) 4.33 (d, J = 13.7 Hz, 1H, CH2b), 4.13 – 3.96 (m, 3H, N-
CH2, CH2-O), 2.44 (s, 3H, CH3), 1.17 (t, J = 10.4 Hz, 3H, CH3; 13C NMR (75 MHz, CDCl3) δ (ppm) 166.65, 160.66, 153.75, 
141.77, 136.37, 133.67, 133.06, 130.56, 129.02, 128.88, 128.78, 128.68, 128.65, 128.61, 128.21, 127.36, 126.32, 104.80, 
60.07, 51.41, 35.30, 22.95, 14.29; HRMS (ESI): Calc for C28H28ClN2O2S (M+H) +: 491.1832 found: 491.1835 

2.3.7  Ethyl 1-(4-chlorobenzyl)-2-((4-chlorobenzyl) sulfanyl)-6-methyl-4-phenyl-1,4- dihydropyrimidine-5-carboxylate 
8b 

 Yield = 65%. 1H NMR (300 MHz, CDCl3) δ(ppm) 7.5- 7.1 (m, 13H, HAr), 5.22 (s, 1H, CH), 4.91 (d, J = 16.3 Hz, 1H, N-CH), 
4.51 (d, J = 13.8 Hz, 1H, S-CH2a), 4.34 (d, J = 13.8 Hz, 1H, S-CH2b), 4.10 (d, J = 16.3 Hz, 1H, N-CH2), 4.08 – 3.91 (m, 2H, CH2-
O), 2.44 (s, 3H, CH3), 1.14 (t, J = 7.0 Hz, 3H, CH3); 13C NMR (75 MHz, CDCl3) δ (ppm) 166.71, 161.01, 142.13, 136.35, 
135.16, 133.07, 130.57, 128.85, 128.59, 128.12, 127.98, 127.43, 127.33, 104.49, 60.00, 59.68, 51.95, 35.22, 23.02, 14.18; 
HRMS (ESI): Calc for C28H27Cl2N2O2S (M+H) +: 525. 1543 found: 525.1548.  

2.3.8 Ethyl 2-((4-chlorobenzyl) sulfanyl)-1-ethyl-6-methyl-4-phenyl-1, 4-dihydropyrimidine-5- carboxylate 8c  

Yield =66%. 1H NMR (300 MHz, CDCl3) δ (ppm) 7.40 – 7.23 (m, 9H, HAr), 5.36 (s, 1H ; CH), 4.51 (d, J = 13.6 Hz, 1H, S-CH2a), 
4.31 (d, J = 13.6 Hz, 1H, S-CH2b), 4.23 – 4.05 (m, 2H, CH2-O), 3.49 (dq, J = 14.4, 7.1 Hz, 1H, N-CH2, 3.29 (dq, J = 14.4, 7.1 Hz, 
1H, N-CH2), 1.26 (t, J = 7.1 Hz, 3H, CH3), 1.15 (t, J = 7.1 Hz, 3H, CH3);13C NMR (75 MHz, CDCl3) δ (ppm) 166.94, 160.73, 
154.47, 143.27, 136.50, 133.05, 130.56, 127.94, 127.02, 104.18, 60.59, 59.73, 44.70, 34.81, 23.13, 14.41, 13.44; HRMS 
(ESI): Calc for C23H26ClN2O2S (M+H) +: 429. 1752 found: 429.1757. 

2.3.9 Ethyl 1-benzyl-2-(benzylsulfanyl)-6-methyl-4-phenyl-1, 4-dihydropyrimidine-5-carboxylate 8d  

Yield = 54%. 1H NMR (300 MHz, CDCl3) δ (ppm) 7.46 – 7.16 (m, 15H, HAr), 5.23 (s, 1H, CH), 4.95 (d, J = 16.0 Hz, 1H, N-
CH2), 4.59 (d, J = 13,4 1H, S-CH2a), 4.45 (d, J = 13,4,1Hz, S-CH2b), 4.14 – 3.98 (m, 3H, N-CH2, CH2-O), 2.46 (s, 3H, CH3), 1.15 
(t, J = 7.1 Hz, 3H, CH3);13C NMR (75 MHz, CDCl3) δ (ppm) 166.79, 161.45, 154.43, 142.29, 137.58, 135.25, 129.23, 128.82, 
128.57, 128.35, 128.05, 127.92, 127.47, 127.43, 127.33, 104.38, 59.83, 59.62, 51.90, 36.11, 23.13, 14.19; HRMS (ESI): 
Calc for C28H28N2NaO2S (M+Na) +: 479. 2583 found: 479.2588.  
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2.3.10 Ethyl 2-(benzylsulfanyl)-1-ethyl-6-methyl-4-phenyl-1, 4-dihydropyrimidine-5-carboxylate 8e  

Yield = 70%. 1H NMR (300 MHz, CDCl3) δ (ppm) 7.51 – 7.23 (m, 10H, HAr), 5.38 (s, 1H, CH), 4.58 (d, J = 13.4 Hz, 1H, S-
CH2a), 4.42 (d, J=13.4Hz, 1H, S-CH2b), 4.23 – 4.08 (m, 2H, CH2-O), 3.52 (dq, J = 14.4, 7.2 Hz, 1H, N-CH2), 3.38 – 3.25 (dq, J 
= 14.4, 7.2 Hz, 1H, N-CH2), 2.42 (s, 3H, CH3), 1.27 (t, J = 7.1 Hz, 3H, CH3), 1.16 (t, J = 7.1 Hz, 3H, CH3);13C NMR (75 MHz, 
CDCl3) δ (ppm) 167.00, 161.26, 143.36, 137.63, 129.24, 128.54, 127.92, 127.33, 127.07, 104.09, 60.62, 59.72, 44.76, 
35.73, 23.17, 14.37, 13.45; HRMS (ESI) : Calc for C23H27N2O2S (M+H) +: 395.2187.found : 395.2191  

2.3.11 Ethyl 1-benzyl-2-(benzylsulfanyl)-6-methyl-4-(p-tolyl)-1, 4-dihydropyrimidine-5-carboxylate 8f  

Yield = 54%. 1H NMR (300 MHz, CDCl3) 7.50 – 7.07 (m, 14H, HAr), 5.18 (s, 1H, CH), 4.94 (d, J = 16.0 Hz, 1H, N-CH2), 4.55 
(d, J = 13.4 Hz, 1H, S-CH2a), 4.45 (d, J = 13.4 Hz, 1H, S-CH2b), 4.15 – 3.93 (m, 3H, N-CH2, CH2-O), 2.45 (s, 3H, CH3), 2.35 (s, 
3H, CH3), 1.15 (t, J = 7.1 Hz, 3H, CH3);13C NMR (75 MHz, CDCl3) δ (ppm) 166.79, 161.35, 154.25, 139.39, 137.78, 137.62, 
135.31, 129.23, 129.21, 128.79, 128.49, 127.87, 127.42, 127.40, 127.30, 104.44, 59.59, 59.52, 51.74, 36.08, 23.13, 21.19, 
14.19; HRMS (ESI): Calc for C29H31N2O2S (M+H) + : 471.2557. found: 471.2561.  

2.3.12 Ethyl 2-(benzylsulfanyl)-1-ethyl-6-methyl-4-(p-tolyl)-1, 4-dihydropyrimidine-5-carboxylate 8g  

Yield = 66%. 1H NMR (300 MHz, CDCl3) δ (ppm) δ 7.46 – 7.27 (m, 5H, HAr), 7.18 (dd, J = 40.2, 8.0 Hz, 4H, HAr), 5.33 (s, 1H, 
CH), 4.56 (d, J = 13.4 Hz, 1H, S-CH2a), 4.40 (d, J = 13.4 Hz, 1H, S-CH2b) , 4.22 – 4.07 (m, 2H, CH2-O), 3.50 (dq, J = 14.3, 7.2 
Hz, 1H, N-CH2), 3.30 (dq, J = 14.3, 7.2 Hz, 1H, N-CH2), 1.27 (t, J = 7.1 Hz, 3H, CH3), 1.16 (t, J = 7.1 Hz, 3H, CH3);13C NMR (75 
MHz, CDCl3) δ (ppm) 167.03, 161.09, 154.65, 140.57, 137.66, 129.23, 129.20, 128.52, 127.30, 104.10, 60.21, 59.67, 
44.61, 35.69, 23.22, 21.17, 14.45, 13.45; HRMS (ESI) : Calc for C24H29N2O2S (M+H) +: 409.2714 found : 409.2719.  

2.3.13 Ethyl 1-benzyl-2-((4-chlorobenzyl) sulfanyl)-6-methyl-4-(p-tolyl)-1, 4-dihydropyrimidine-5- carboxylate 8h  

Yield = 62%. 1H NMR (300 MHz, CDCl3) δ (ppm) 7.40 – 7.10 (m, 13H, HAr), 5.19 (s, 1H, CH), 4.91 (d, J = 16.0 Hz, 1H, N-
CH2), 4.51 (d, J = 13.7 Hz, 1H, S-CH2a), 4.34 (d, J = 13.7 Hz, 1H, S-CH2b), 4.15 – 3.99 (m, 3H, N-CH2, CH2-O), 2.44 (s, 3H, CH3), 
2.36 (s, 3H, CH3), 1.16 (t, J = 7.1 Hz, 3H, CH3); 13C NMR (75 MHz, CDCl3) δ (ppm) 166.77, 160.84, 154.06, 139.31, 137.87, 
136.49, 135.24, 133.06, 104.47, 59.65, 51.81, 35.24, 23.08, 21.20, 14. 27; HRMS (ESI): Calc for C29H29ClN2NaO2S (M+Na) 
+: 527. 2035 found: 527.2040. 

2.3.14 Ethyl 2-((4-chlorobenzyl) sulfanyl)-1-ethyl-6-methyl-4-(p-tolyl)-1, 4-dihydropyrimidine-5- carboxylate 8i  

Yield = 70%. 1H NMR (300 MHz, CDCl3) δ (ppm) 7.39 – 7.25 (m, 4H, HAr), 7.24 – 7.06 (m, 4H, HAr), 5.31 (s, 1H, CH), 4.50 
(d, J = 13.6 Hz, 1H, S-CH2a), 4.30 (d, J = 13.6 Hz, 1H, S-CH2b), 4.21 – 4.03 (m, 2H, CH2-O), 3.48 (dq, J = 14.4, 7.2 Hz, 1H, N-
CH2), 3.28 (dq, J = 14.4, 7.1 Hz, 1H, N-CH2), 2.38 (s, 3H, CH3), 2.33 (s, 3H, CH3), 1.26 (dd, J = 8.9, 5.4 Hz, 3H, CH3), 1.14 (t, J 
= 7.1 Hz, 3H, CH3).13C NMR (75 MHz, CDCl3) δ (ppm) 167.04, 162.08, 160.69, 145.86, 140.39, 137.66, 136.68, 130.56, 
129.20, 128.59, 126.98, 104.32, 60.30, 59.76, 44.59, 34.80, 23.20, 21.15, 14.35, 13.41; HRMS (ESI): Calc for 
C24H27ClN2NaO2S (M+Na) +: 465. 1841 found: 465.1837.  

2.3.15 Ethyl 1-benzyl-2-((4-(methoxycarbonyl) benzyl) sulfanyl)-6-methyl-4-(p-tolyl)-1, 4- dihydropyrimidine-5-
carboxylate 8j  

Yield = 68%. 1H NMR (300 MHz, CDCl3) δ (ppm) 8.02 – 7.98 (m, 2H, HAr), 7.47 (d, J = 8.3 Hz, 2H, HAr), 7.44 – 7.07 (m, 9H, 
HAr), 5.17 (s, 1H, CH), 4.90 (d, J = 16.0 Hz, 1H, N-CH2), 4.58 (d, J = 13.7 Hz, 1H, S-CH2a), 4.40 (d, J = 13.7 Hz, 1H, S-CH2b), 
4.14 – 3.98 (m, 3H, N-CH2, CH2-O), 3.95 (s, 3H, CH3), 2.42 (s, 3H, CH3), 2.35 (s, 3H, CH3), 1.14 (dd, J = 9.3, 4.9 Hz, 3H, 
CH3);13C NMR (75 MHz, CDCl3) δ (ppm) 167.04, 160.66, 154.00, 143.62, 137.87, 135.24, 129.73, 129.26, 129.18, 128.83, 
127.68, 127.37, 127.31, 127.01, 104.17, 65.41, 59.66, 52.15, 51.74, 35.57, 23.02, 21.21, 14.17; HRMS (ESI) : Calc for 
C31H33N2O4S (M+H) +: 529.2532 found : 529.2534.  

2.3.16 Ethyl 1-ethyl-2-((4-(methoxycarbonyl) benzyl) sulfanyl-6-methyl-4-(p-tolyl)-1, 4- dihydropyrimidine-5-
carboxylate 8k  

Yield = 55%. 1H NMR (300 MHz, CDCl3) δ (ppm) 8.04 – 7.46 (m, 4H, HAr), 7.24 – 7.04 (m, 4H, HAr), 5.31 (s, 1H, CH), 4.60 
(d, J = 13.7 Hz, 1H, S-CH2a), 4.40 (d, J = 13.7 Hz, 1H, S-CH2b), 4.19 – 4.06 (m, 2H, CH2-O), 3.94 (s, 3H, CH3- O), 3.49 (dq, J = 
14.4, 7.1 Hz, 1H, N-CH2), 3.29 (dq, J = 14.4, 7.1 Hz, 1H, N-CH2), 2.38 (s, 3H, CH3), 2.32 (s, 3H, CH3), 1.25 (dd, J = 9.1, 5.1 Hz, 
3H, CH3), 1.14 (dd, J = 8.6, 5.7 Hz, 3H, CH3).13C NMR (75 MHz, CDCl3) δ (ppm) 166.93, 160.36, 143.40, 140.31, 137.70, 
129.76, 129.22, 126.98, 104.35, 60.36, 59.79, 52.10, 44.65, 35.16, 22.98, 21.15, 14.34, 13.45; HRMS (ESI): Calc for 
C31H33N2O4S (M+H) + :529. 2241. found: 529.2244. 
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2.4 Biological Materials 

The microbial support consisted of clinical strains of E. coli (Gram-negative bacteria) and S. aureus (Gram-positive 
bacteria). These strains were provided by the Laboratoire National de la santé Publique (LNSP) of Cote d'Ivoire. These 
strains were all pathogenic and multi-resistant. S. aureus strains was resistant to: Amoxicillin, Ampicillin, Oxacillin, 
Ceftazidine, Fosfomycin, Vancomycin and Cefsulodine and those of E. coli, was all resistant to: Amoxicillin, Ampicillin, 
Ceftriazone, Fosfomycin, Cefsulodine. The culture media used was: Mueller-Hinton broth (Oxoid) and Mueller-Hinton 
agar (Lab.Conda s.a). The synthetic products were composed of eight 2-alkyl sulfanyl-pyrimidine (3a-k) derivatives. The 
solvents used for solubilization of chemicals products was dimethylsulfoxide (DMSO) and distilled water.  

2.5 Biological methods  

In this study, the antibacterial activity evaluation was performed according to the macro dilution technique reported by 
T. Marc et. al., [16] and Moroh J-L. et. al [17], with some modifications. A series of dilutions of the synthetic chemical 
products in Muller Hinton broth was carried out followed by a colony count on agar medium. Thus, a stock solution of 
1000 µg/mL of chemical products was prepared by dissolving 0.1g of powder of each synthetic chemical product in 100 
ml of a DMSO/water mixture (50/50). The stock solution of 1000 µg/mL of DMSO/water (50/50) mixture was 
incorporated into Muller Hinton broth in six test tubes to make final dilutions with concentrations rang from: 500; 250; 
125; 62.5; 31.250 to 15.6250 µg/mL with a dilution factor of 1/2. Each tube contains 10 mL of the chemical product 
stock solution/Muller Hinton broth mixture. Control tubes, i.e. without the synthetic chemical product and containing 
only Muller Hinton broth, was also prepared. All these solutions (media without chemical synthesis product and media 
with chemical synthesis product) was autoclaved for 15 min at 121°C. Then a bacterial inoculum estimated at 106 
CFU/mL was prepared from a 16-hour-old colony of multidrug-resistant E. coli and S. aureus strains and adjusted by 
opacimeter with the Mac Farland standard. All media (test and control) was inoculated with 0.2 ml of the inoculum and 
incubated at 37°C for 18 - 24 hours. The tests were repeated 3 times. The contents of the different tubes were then 
transferred to petri dishes containing 15 mL of Mueller-Hinton agar. This operation consisted of taking 1 mL of the broth 
contained in the tubes and adding it to 9 mL of sterile distilled water to obtain a 10-1 dilution. 1 mL of the 10-1 dilution 
was taken again and added to 9 mL of sterile distilled water to obtain the 10-2 dilution. This operation was repeated 
until a 10-4 dilution solution was obtained. A bactericidal control was performed by plating 0.1 mL of the 10°, 10-1, 10-

2, 10-3 and 10-4 dilutions on 15 mL of Mueller-Hinton agar in a petri dish and incubating at 37°C. This operation was 
repeated three (3) times for each compound and each germ. After 24 hours of observation, the number of colonies was 
counted directly. It is expressed as a percentage of inhibition compared to the control.  

 MIC: This is the lowest concentration of synthetic chemical that inhibits 99% of bacteria calculated compared 
to the control. 

 MBC: Minimum Bactericidal Concentration 

3. Results and discussion 

3.1 Chemistry 

The synthesis of the new thiopyrimidine compounds (6a-e) was achieved by reacting 2-thiopyrimidines (4) with benzyl 
halides in the presence of a base [18] (Figure 1). The starting 2-thiopyridines were obtained by a stereospecific process 
between ethyl acetoacetate, thiourea and p-alkylbenzaldehydes under reflux of ethanol in the presence of hydrochloric 
acid [19]. From the two precursors, we got twelve new 2-benzylthio-pyrimidines (6a-l) by nucleophilic substitution 
reaction between 2-thiopyrimidines (4) and benzyl halides in dimethylformamide (DMF) in the presence of potassium 
carbonate (K2CO3) as base. The molecules were obtained with yields between 51% - 94. The method of N-
alkylation/arylation consists to treat 2- thiopyrimidine with a base, thus creating an amide ion which will subsequently 
react with an appropriate carbon chain to lead to N-alkyl derivatives [20, 21]. Compounds (8a-k) were obtained using 
the second method by condensation of 2-alkylsulfanyl-pyrimidine with ethyl or benzyl chloride in the presence of 
potassium carbonate (K2CO3) under reflux of dimethylformamide (DMF) (Figure 1). All synthesized compounds were 
characterized by 1H, 13C NMR spectra and HRMS. The 1 H NMR spectrum of the 2-benzylthio-pyrimidines (6a-e) revealed 
the presence of two doublets between 4.13 and 5.43 ppm that we attributed to the two protons of the methylene group 
of benzyl bond to the sulfur atom (S-CH2). The appearance of twice protons in two doublets could be explained by the 
tetrahedral geometry of the molecule. Protons behave as if they were neighbors to an asymmetric carbon. Concerning 
1H NMR spectrum for compound (8a-k), the two protons of the methylene group linked to the nitrogen atom (N-CH2) of 
1-ethyl-2-benzylsulfanyl-pyrimidine appeared in two multiplets. Around 3.49 ppm, we observed the first quadruplet 
doublet corresponding to a hydrogen with the coupling constants Jpq = 14.4 Hz; Jp- (3H) = 7.2 Hz. The second hydrogen 
appeared also in the quadruplet doublet form at 3.30 ppm with the coupling constants Jqp = 14.4 Hz; Jq- (3H) = 7.2 Hz. 
Likewise, these twice protons in 1- benzyl-2-benzylsulfanyl-pyrimidines, two others signal were observed. The first one 
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was a doublet, it fitted around 4.90 ppm with a coupling constant Jpq = 16 Hz for a proton of the methylene group (N-
CH2) and the second one was confused in the multiplet detected in the fitting region of signal between 4.14 and 3.99 
ppm. 

 

Figure 1 Synthesis of compounds (6a-e) and (8a-k). Reagents and operating conditions: (i): HCl/ethanol (reflux); (ii) 
K2CO3/DMF, r.t, (iii) K2CO3/DMF, 70°C  

3.2 Biology 

Table 1 Antibacterial parameters of N-alkyl-2-benzylthiopyrimidines (MIC and MBC) 

 S. aureus1174  E. coli 1178 

Compounds MIC 

(µg/mL) 

MBC 

(µg/mL) 

MBC/ 
MIC 

Power or 
Capacity 

MIC 

(µg/mL) 

MBC 

(µg/mL) 

MBC/ 
MIC 

Power or 
Capacity 

6a - - - - - - - - 

6b - - - - - - - - 

6c - - - - - - - - 

6d - - - - - - - - 

6e - - - - - - - - 

8b 125 250 2 bactericidal - - - - 

8c 500 500 1 Bactericidal - - - - 

8d 250 500 2 Bactericidal - - - - 

8e - - - - - - - - 

8f 125 250 2 bactericidal - - - - 

8g - - - - - - - - 

8h - - - - 500 500 1 bactericidal 

8i - - - - - - - - 

8j - - - - - - - - 

8k - - - - - - - - 
-: Not determined. 
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The antibacterial parameters (MIC and MBC) were determined by the liquid microdilution method. These parameters 
are recorded in the Table below. The results of the antibacterial effect of 2-benzylthiopyrimidines (6a-e) on S. aureus 
show that these compounds showed no minimum inhibitory concentration (MIC). On E. coli, also these compounds 
revealed no minimum inhibitory concentration. When the ethyl or benzyl groups were introduced on the nitrogen, the 
N-alkylated compounds thus obtained (8b, 8c, 8d and 8f) showed a minimum inhibitory concentration (MIC) on S. 
aureus with respective values of 125, 500, 250 and 125µg/mL. On E. coli, only compound 8h showed a minimum 
inhibitory concentration (MIC = 500 µg/mL). Also, the different MBCs were determined and then the MBC/MIC ratios 
of compounds 8b, 8c, 8d and 8f on S. aureus1174 showed that they all have a bactericidal power. For the E. coli 1178 
bacterial strain, only compound 8h showed bactericidal power. The existence of MICs for compounds 8b, 8c, 8d and 8f 
shows that the N-alkyl/aryl compounds were more active than their precursors 6a, 6b and 6c. This shows that N-
alkylation or N-arylation improved the antibacterial activity of the 2-thiopyrimidine derivatives. The majority of the 
active compounds came from N- arylation. This could be due to the fact that the benzyl group is more electron rich.  

4. Conclusion 

This work synthesized and studied the influence of N-alkylation on the antibacterial activity of 2-thiopyrimidine 
derivatives. The 2-benzylthiopyrmidine derivatives (6a-e) were with a yield ranging from 51 to 94%. As for the twelve 
N-substituted 2-benzylthiopyrimidine derivatives, they were obtained in yields ranging from 54 to 70%. All these 
compounds were characterized by 1H, 13C NMR and high resolution mass spectrometry. The results of antibacterial tests 
showed that N-alkylation/arylation enhanced the antibacterial effect of some 2-benzylthiopyrimidine derivatives. The 
introduction of the aryl group on the nitrogen at position -1 of 2-benzylthiopyrimidines improved the antibacterial 
activity more and this is due to the fact that it is more electron rich. It is therefore an interesting avenue of structural 
modification in the search for more effective antibacterial compounds. 
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