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Abstract 

The two-dimensional (2D) version of ferromagnet XXZ spin chain with DzyaloshinskyMoriya (DM) interaction, recently 
introduced by F. Kenmogne and coworkers is reexplored. Firstly by using the Dyson-Maleev transformation, the 2-D 
discrete nonlinear Schrödinger (DNLS) equation, governing the quantum states behaviors is found. Next using the 
semidiscrete multiple-scale method, the 2-D DNLS equation is reduced to the 2D extended nonlinear Schrödinger 
(ENLS) equation which consists of the basic 2-D NLS equation with additional nonlinear dispersive terms. This equation 
admits the classical 2D pulse quantum states, when additional terms vanish. In addition, this equation admits the 2D 
compacton and 2D peakon-like boson quantum states. Furthermore, we notice that on the contrary to the classical 
outcomes where amplitudes of both solutions are free parameters, the amplitudes for two dimensional quantum states 
are not free parameters since the obtained solutions need to be normalized.  
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1. Introduction

More recently, F. Kenmogne and coworkers [1] investigated the possible propagation of transverse compactlike pulse 
signal propagation in a two-dimensional nonlinear electrical transmission network with the intersite circuit elements 
(both in the propagation and transverse directions) acting as nonlinear resistances. Pulse compactons being found for 
the first time by Roseneau and Hyman[2, 3, 4]. Since these pioneering works, a growing number of works had been 
devoted to this particular discovery, and this in almost all physical domain, and particularly in nonlinear electrical 
transmission lines [1, 5, 6, 7] and optical fibers[8, 9]. It has been proved that each equation admitting the compacton as 
a solution for certain range of parameters, could admit other forms of solutions with discontinuous derivatives in the 
form of peaks or cusps elsewhere. All solutions found in these studies are classical since the output signals obtained are 
proportional to the input initial conditions.  

Nowadays, in the classical domain, intrinsic localized modes (ILMs), well known as discrete breathers or lattice solitons, 
have attracted enormous attention in many areas of physics [10]. Discrete breathers can be defined as spatially localized 
and time-periodic excitations that can exist in classical discrete nonlinear systems. Discrete breathers have been 
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extensively studied in theoretical and computational settings [11], in order to understand the physical mechanism of 
energy transfer in low dimensional system. 

Recently, some works have been devoted on the studies of quantum soliton like breathers in Heisenberg spin chains, 
namely by using numerical diagonalization, and nondegenerate and degenerate perturbation theory, Djoufack et al [12, 
13] calculating energy spectrum of anisotropic ferromagnetic Heisenberg spin chains, shown that two, four, and six-
quanta quantum breathers can exist in these ferromagnetic chains. While recently, Bing Tang et al [14] have analytically 
shown that quantum breathers with a large number of quanta are possible in ferromagnetic chains with on-site easy 
axis anisotropy. More recently, Djoufack et al [15] have constructed the quantum soliton and theirs properties in 1D 
Heisenberg spin chains included Dzyaloshinsky-Moriya interaction for a long range interactions. 

In this paper, we reconsider the two-dimensional (2D) version of the Heisenberg ferromagnetic XXZ spin chain with DM 
interaction recently introduced by F. Kenmogne et al. [16]. Let us remember that the DM interaction was proposed first 
by Dzyaloshinsky and Moriya to describe weak ferromagnet, which is essentially an antisymmetric spin coupling that 
appears when the symmetry around the magnetic ions is not high enough, thus leading to the mechanism of weak 
ferromagnetism, which is caused by the combined effect of spin-orbit coupling and spin-spin exchange interaction [17, 
18]. In magnetic systems, weak ferromagnetism plays an important role in depicting insulators, quantum phase 
transitions, spin soliton excitations [19]. one may wonder whether the weak ferromagnetic systems may admit 2D-
compacton and 2-D peakon as quantum excitations, analogous to their classical counterparts. The answer to this 
question is the main objective of the present work. 

Thus the paper is structured as follows: In Sec.2, we present the model description and the derivation of the 2-D DNLS 
equation. In Sec.3, we use the semi-discrete multiple-scale method to derive the 2-D ENLS equation governing weak 
amplitude modulated waves. In Sec.4, we obtain the stationary localized exotic solitons as solution namely: the bright 
compacton and peakon-like quantum breathers. Finally, in Sec.5, we give some concluding remarks. 

2. Model description and derivation of the discrete NLS equation 

2.1. Hamiltonian description and its Bosonization 

The starting point here is the Hamiltonian for an anisotropic ferromagnetic chain with uniform DM interaction, given 
by[14]: 

𝐻 = −∑∑[𝐽1 (𝑆𝑖𝑗
𝑥𝑆{𝑖+1,𝑗}

𝑥 + 𝑆{𝑖𝑗}
𝑥 𝑆{𝑖,𝑗+1}

𝑥 + 𝑆{𝑖𝑗}
𝑦
𝑆{𝑖+1,𝑗}
𝑦

+ 𝑆{𝑖𝑗}
𝑦
𝑆{𝑖,𝑗+1}
𝑦

) + 𝐽2(𝑆{𝑖𝑗}
𝑧 𝑆{𝑖+1,𝑗}

𝑧 + 𝑆{𝑖𝑗}
𝑧 𝑆{𝑖,𝑗+1}

𝑧 )]

𝑓

𝑗

𝑓

𝑖

 

+𝐷⃗⃗ ∑ ∑ (𝑆 {𝑖𝑗} × 𝑆 {𝑖+1,𝑗}  + 𝑆 {𝑖𝑗} × 𝑆 {𝑖,𝑗+1})
𝑓
{𝑗}

𝑓
{𝑖} , ……………………  (1) 

with 𝑆 𝑖𝑗 = (𝑆{𝑖𝑗}
𝑥 ;  𝑆{𝑖𝑗}

𝑦
 ;  𝑆{𝑖𝑗}

𝑧 ), where 𝑆{𝑖𝑗}
𝑚  (𝑚 =  𝑥;  𝑦;  𝑧) is the 𝑚{𝑡ℎ} component of the spin operator on the site j, 𝐽1 and 

𝐽2 are the exchange constants, 𝐷⃗⃗ = 𝐷𝑒𝑧⃗⃗⃗⃗ , D being the DM interaction parameter, while f is the number of sites in this 

magnetic lattice. By setting 𝑆{{𝑖𝑗}±} = 𝑆{𝑖𝑗}
𝑥 ±  𝐼 𝑆{𝑖𝑗}

𝑦
, with 𝐼^2 = −1 , the Hamiltonian (1) can be rewritten as 

𝐻 = −
1

2
∑ ∑ [𝐽1(𝑆{𝑖𝑗}

+ 𝑆{𝑖+1,𝑗}
−  + 𝑆{𝑖𝑗}

+ 𝑆{𝑖,𝑗+1}
−  + 𝑆{𝑖𝑗}

− 𝑆{𝑖+1,𝑗}
+  + 𝑆{𝑖𝑗}

− 𝑆{𝑖,𝑗+1}
+  )

𝑓
{𝑗}

𝑓
{𝑖} + 2𝐽2𝑆{𝑖𝑗}

𝑧 𝑆{𝑖+1,𝑗}
𝑧 +  2𝐽2𝑆{𝑖𝑗}

𝑧 𝑆{𝑖,𝑗+1}
𝑧 ]  −

 𝐼
 𝐷

2
∑ ∑ (𝑆{𝑖𝑗}

− 𝑆{𝑖+1,𝑗}
+ + 𝑆{𝑖𝑗}

− 𝑆{𝑖,𝑗+1}
+ − 𝑆{𝑖𝑗}

+ 𝑆{𝑖+1,𝑗}
− − 𝑆{𝑖𝑗}

+ 𝑆{𝑖,𝑗+1}
− )

𝑓
𝑗

𝑓
𝑖 ,………………(2) 

𝑤ℎ𝑒𝑟𝑒 𝑆{𝑖𝑗}
+ , 𝑆{𝑖𝑗}

−  and 𝑆𝑖𝑗
𝑧  are spin operators satisfying the commutation relations [𝑆{𝑖𝑗}

+ , 𝑆_{𝑖′𝑗′] = 2𝑆{𝑖𝑗}
𝑧 𝛿{𝑖𝑗 }𝛿{𝑖′𝑗′} 

and [𝑆{𝑖𝑗}
± , 𝑆{𝑖′𝑗′}

𝑧 ] = ∓ 𝑆{𝑖𝑗}
± 𝛿{𝑖𝑗}𝛿{𝑖′𝑗′} , with 𝑆{𝑖𝑗}⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑆{𝑖𝑗}⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑆(𝑆 + 1). For sake of simplicity, the Planck constant is set to ℏ =

1 in this paper. To obtain the new version of (2) as function of creation and annihilation operators, let us introduce the 
Dyson-Maleev transformation as [20]: 

𝑆{𝑖𝑗}
+ = (2𝑆)

1

2 (1 −
𝑎𝑖𝑗
†
𝑎{𝑖𝑗}

2𝑆
)𝑎{𝑖𝑗}, 𝑆{𝑖𝑗}

− = (2𝑆)
1

2𝑎𝑖𝑗
†  ……………… (3) 
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𝑆{𝑖𝑗}
𝑧 = 𝑆 − 𝑎𝑖𝑗

† 𝑎{𝑖𝑗}. ……………… (4) 

where 𝑎{𝑖𝑗}(𝑎𝑖𝑗
† )  is a boson annihilation (creation) operator, leading by setting 𝛼 = 𝐽1 + 𝐼𝐷  in (1) to the following 

bosonized Hamiltonian: 

𝐻 = −∑ ∑ 𝑆
𝑓
{𝑗}

𝑓
{𝑖} [𝛼∗ 𝑎{𝑖+1,𝑗}

† 𝑎{𝑖𝑗} + 𝛼
∗ 𝑎{𝑖,𝑗+1}

† 𝑎{𝑖𝑗} + 𝛼 𝑎{𝑖𝑗}
† 𝑎{𝑖+1,𝑗} + 𝛼 𝑎{𝑖𝑗}

† 𝑎{𝑖,𝑗+1} − 𝐽2 (𝑎{𝑖+1,𝑗+1}
†  𝑎{𝑖+1,𝑗+1} +

 𝑎{𝑖𝑗}
†  𝑎{𝑖𝑗})] +

1

2
∑ ∑ (𝛼 𝑎{𝑖+1,𝑗}

† 𝑎{𝑖𝑗}
†  𝑎{𝑖+1,𝑗} 𝑎{𝑖+1,𝑗}

𝑓
{𝑗}

𝑓
{𝑖} + 𝛼 𝑎{𝑖,𝑗+1}

† 𝑎{𝑖𝑗}
†  𝑎{𝑖,𝑗+1} 𝑎{𝑖,𝑗+1} + 𝛼

∗𝑎{𝑖+1,𝑗}
† 𝑎{𝑖𝑗}

†  𝑎{𝑖𝑗}𝑎{𝑖𝑗}  +

𝛼∗𝑎{𝑖,𝑗+1}
† 𝑎{𝑖𝑗}

†  𝑎{𝑖𝑗}𝑎{𝑖𝑗} − 2𝐽2( 𝑎{𝑖+1,𝑗}
† 𝑎{𝑖𝑗}

† 𝑎{𝑖+1,𝑗}𝑎{𝑖𝑗} + 𝑎{𝑖,𝑗+1}
† 𝑎{𝑖𝑗}

† 𝑎{𝑖,𝑗+1}𝑎{𝑖𝑗}) ) . ……………… (5) 

To avoid overloading the paper, the ground state energy is neglected. 

2.2. Quantum dynamics Analysis and time-dependent Hartree approximation 

In the quantum mechanics point of view, one can use these following three different methods which seem to be 
equivalent and that are the Dirac interaction, the Schrödinger and Heisenberg picture. In this present work, the 
Schrödinger picture is adopted to analyze the quantum dynamic of our system. Thus, the state vector |Ψ(𝑡)〉 is time 
dependent, while operators are time independent. The time evolution of the state vector |Ψ(𝑡)〉  of the system is 
governed by the Schrödinger equation 

𝐼
𝑑|Ψ(𝑡)〉

𝑑𝑡
= 𝐻|Ψ(𝑡)〉. ……………… (6) 

The Hamiltonian (H) in Eq. (6) commutes with the number operator defined as 𝑁̂ = ∑ ∑ 𝑎{𝑖𝑗}
†  𝑎{𝑖𝑗}

𝑓
{𝑗}

𝑓
{𝑖}  whose eigenvalue 

is n. Thus, the boson number is conserved. Taking in consideration H in (5) and 𝑁̂, we can deduce that the boson number 
is conserved and obviously, one can rewrite the system using the Fock representation, 
in which the general n-boson system state vector is expanded as [14]  

|Ψ(𝑡)〉 =
1

√𝑛!
∑ ∑ . . .

𝑓
{𝑖2,𝑗2=1}

𝑓
{𝑖1,𝑗1=1}

∑ 𝜃𝑛
𝑓
{𝑖𝑛,𝑗𝑛=1}

(𝑖1, 𝑖2, . . . , 𝑖𝑛, 𝑗1, 𝑗2, . . . , 𝑗𝑛, 𝑡) 𝑎{𝑖1𝑗1}
†  𝑎{𝑖2𝑗2}

† . . . 𝑎{𝑖𝑛𝑗𝑛}
† |0〉.……………… (7) 

where |0⟩ ≡ |0⟩1|0⟩2 · · · |0⟩f is the vacuum state. θn are fn time dependent coefficients of corresponding number states, 
while more generally θn (i1, i2, ..., in, j1, j2, ..., jn, t) is the n-boson wave function, which need to be normalized as  

∑ ∑ . .
𝑓
{𝑖2,𝑗2=1}

.
𝑓
{𝑖1,𝑗1=1}

∑ |𝜃𝑛(𝑖1, 𝑖2, . . . , 𝑖𝑛 , 𝑗1, 𝑗2, . . . , 𝑗𝑛,
𝑓
{𝑖𝑛,𝑗𝑛=1}

𝑡) |2 = 1. ……………… (8) 

Taking into account the bosonized Hamiltonian (5) and the state vector (7) into the Schrödinger equation (6) and 

considering the boson commutation relations[𝑎{𝑖𝑗}, 𝑎{𝑖𝑗}
† ] = 𝛿{𝑖𝑗}𝛿{𝑖′𝑗′} , the following Schrödinger equation for the n-

boson wave function:   

(𝐼
𝑑

𝑑𝑡
− 𝑛𝜔0) 𝜃𝑛(𝑖1, 𝑖2, . . . , 𝑖𝑛 , 𝑗1, 𝑗2, . . . , 𝑗𝑛 , 𝑡) = −𝑆 ∑ ∑[

𝑛

{𝑙=1}

𝑛

{𝑘=1}

 

𝛼∗𝜃𝑛 (𝑖1, 𝑖2, . . . , 𝑖{𝑘−1}, 𝑖{𝑘} − 1, 𝑖{𝑘+1}, . . . , 𝑖𝑛 , 𝑗1, 𝑗2, . . . , 𝑗{𝑙−1}, 𝑗{𝑙} − 1, 𝑗{𝑙+1}, . . . , 𝑗𝑛, 𝑡) + 𝛼𝜃𝑛(𝑖1, 𝑖2, . . . , 𝑖{𝑘−1}, 𝑖{𝑘} +

1, 𝑖{𝑘+1}, . . . , 𝑖𝑛 , 𝑗1, 𝑗2, . . . , 𝑗{𝑙−1}, 𝑗{𝑙} + 1, 𝑗{𝑙+1}, . . . , 𝑗𝑛 , 𝑡 ) ] + ∑ ∑ [
𝛼

2
𝛿{𝑖𝑘𝑖𝑘+1𝑗𝑙𝑗𝑙+1}𝜃𝑛(𝑖1, 𝑖2, … , 𝑖𝑙 , … , 𝑖{𝑘−1}, 𝑖{𝑘} +

𝑛
{𝑙≠𝑘}

𝑛
{𝑘=1}

1, 𝑖{𝑘+1}, … , 𝑖𝑛 , 𝑗1, 𝑗2, … , 𝑗𝑙 , … , 𝑗{𝑙−1}, 𝑗{𝑙} + 1, 𝑗{𝑙+1}, … , 𝑗𝑛, 𝑡) +
𝛼∗

2
𝛿{𝑖𝑘𝑖𝑘−1𝑗𝑙𝑗𝑙−1}𝜃𝑛(𝑖1, 𝑖2, . . . . , 𝑖𝑙 , . . . , 𝑖{𝑘−1}, 𝑖{𝑘} −

1, 𝑖{𝑘+1}, . . . , 𝑖𝑛 , 𝑗1, 𝑗2, . . . , 𝑗𝑙 , . . . , 𝑗{𝑙−1}, 𝑗{𝑙} − 1, 𝑗{𝑙+1}, . . . , 𝑗𝑛 , 𝑡 ) −

𝐽2𝛿{𝑖𝑘𝑖𝑘+1𝑗𝑙𝑗𝑙+1}𝜃𝑛 (𝑖1, 𝑖2, . . . , 𝑖𝑙 , . . . , 𝑖{𝑘}, . . . , 𝑖𝑛 , 𝑗1, 𝑗2, . . . , 𝑗𝑙 , . . . , 𝑗{𝑙}, . . . , 𝑗𝑛, 𝑡)], ……………… (9) 

is obtained. Where 𝜔0  =  2𝑆𝐽2, and where the interaction between pairs of bosons is a Kronecker delta-function. This 
can be compared with the corresponding quantum field theory for a Bose gas involving a Dirac delta function 
interaction. Equation (9) is the set of ordinary differential equation, difficult to solve exactly, this is why it is natural to 
turn to approximate methods [21, 22, 23]. In our work, we use the time-dependent Hartree approximation, usually 
applied to the studies of nonlinear excitations in optical fibers and lattice systems and which is well known in quantum 
field theory [21, 23]. This approximation is used when the number of boson becomes large and the exact eigenfunctions 
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of the Hamiltonian very difficult to construct. Its basic idea is the fact that a system of n-bosons can be described by a 
single-particle wave function, due to the fact that every boson feels the same potential caused by the interaction with 
other bosons. In this approximation, therefore, n-boson wave function θ(i1, i2, ..., in, j1, j2, ..., jn, t) is assumed to be 
rewritten as a product of the form [24]. 

𝜃𝑛
𝐻(𝑖1, 𝑖2, . . . , 𝑖𝑛, 𝑗1, 𝑗2, . . . , 𝑗𝑛, 𝑡) = ∏ Φ{𝑛,𝑘𝑙}(𝑡)

{𝑛}
{𝑘𝑙} ………………(10) 

where Φn,kl is the single-boson wave function with ik = 1, 2, ..., f, jl = 1, 2, ..., f, l = 1, 2, ..., n and k = 1, 2, ..., n labeling the 
boson. Accounting to Eq. (10), the n-boson state vector (7) can be reduced to 

|Ψ𝑛(𝑡)〉
𝐻 =

1

√𝑛!
(∑ ∑ Φ{𝑛,𝑖𝑗}(𝑡)

𝑓
{𝑗=1}

𝑓
{𝑖=1} 𝑎{𝑖𝑗}

† )
𝑛

|0〉.  ……………… (11) 

and from Eq. (8) the normalization then is ρ = 1, where 

𝜌 = ∑ ∑ |Φ{𝑛,𝑖𝑗}(𝑡)|
2𝑓

{𝑗=1}
𝑓
{𝑖=1}  ……………… (12) 

is the norm. The functions 𝛷𝑛𝑖𝑗(𝑡) are to be determined by extremizing the action integral 𝑆𝐻  =  ∫  𝑑𝑡 (𝐿𝑛(𝑡)) [25]. 

Where Ln(t) given by 

𝐿{𝑛}(𝑡) = 𝑛𝐼 ∑ [𝐼Φ{𝑛,𝑖𝑗}
∗ 𝑑Φ{𝑛,𝑖𝑗}

𝑑𝑡
− 𝜔0Φ{𝑛,𝑖𝑗}

∗ Φ{𝑛,𝑖𝑗} + 𝑆
𝑓
{𝑖𝑗} 𝛼∗Φ{𝑛,𝑖𝑗}

∗ Φ{𝑛,𝑖−1,𝑗} +  𝑆𝛼
∗Φ{𝑛,𝑖𝑗}

∗ Φ{𝑛,𝑖,𝑗−1}  +  𝑆𝛼Φ{𝑛,𝑖𝑗}
∗ Φ{𝑛,𝑖+1,𝑗} +

𝑆𝛼Φ{𝑛,𝑖𝑗}
∗ Φ{𝑛,𝑖,𝑗+1} −

𝛼

2
(𝑛 − 1)[Φ{𝑛,𝑗}

∗ Φ{𝑛,𝑖−1,𝑗}
∗ Φ{𝑛,𝑖𝑗}Φ{𝑛,𝑖𝑗} + Φ{𝑛,𝑖𝑗}

∗ Φ{𝑛,𝑖,𝑗−1}
∗ Φ{𝑛,𝑖𝑗}Φ{𝑛,𝑖𝑗}]  −

𝛼∗

2
(𝑛 −

1)[Φ{𝑛,𝑖𝑗}
∗ Φ{𝑛,𝑖+1,𝑗}

∗ \𝑃ℎ𝑖{𝑛,𝑖𝑗}\𝑃ℎ𝑖{𝑛,𝑖𝑗} + Φ{𝑛,𝑖𝑗}
∗ Φ{𝑛,𝑖,𝑗+1}

∗ Φ{𝑛,𝑖𝑗}Φ{𝑛,𝑖𝑗}] + 𝐽2(𝑛 − 1)[Φ{𝑛,𝑖𝑗}
∗ Φ{𝑛,𝑖−1,𝑗}

∗  Φ{𝑛,𝑖𝑗}Φ{𝑛,𝑖−1,𝑗} +

Φ{𝑛,𝑖𝑗}
∗ Φ{𝑛,𝑖,𝑗−1}

∗  Φ{𝑛,𝑖𝑗}Φ{𝑛,𝑖,𝑗−1}]],  ……………… (13) 

is the Lagrangian. Requiring 𝛿 𝑆𝐻/𝛿Φ{𝑛,𝑖𝑗}
∗ = 0for the optimal Hartree solution, the above action integral leads to the 

following discrete NLS equation of motion for the single-boson wave function: 

𝐼
𝑑Φ{𝑖𝑗}

𝑑𝑡
− 𝜔0Φ{𝑖𝑗} + 𝑆[𝛼

∗(Φ{𝑖−1,𝑗} +Φ{𝑖,𝑗−1}) + 𝛼(Φ{𝑖+1,𝑗} +Φ{𝑗,𝑗+1})] + (𝑛 − 1) [ −
𝛼

2
(Φ{𝑖−1,𝑗}

∗ Φ{𝑖𝑗}
2 +Φ{𝑖,𝑗−1}

∗ Φ{𝑖𝑗}
2 +

|Φ{𝑖+1,𝑗+1}|
2
Φ{𝑖+1,𝑗+1})  −  

𝛼∗

2
(Φ{𝑖+1,𝑗}

∗ Φ{𝑖𝑗}
2 +Φ{𝑖,𝑗+1}

∗ Φ{𝑖𝑗}
2 + |Φ{𝑖−1,𝑗−1}|

2
Φ{𝑖−1,𝑗−1}) + 𝐽2 (|Φ{𝑖−1,𝑗}|

2
+ |\𝑃ℎ𝑖{𝑖,𝑗−1}|

2
+

|Φ{𝑖+1,𝑗}|
2
+ |Φ{𝑖,𝑗+1}|

2
)Φ{𝑖𝑗}] = 0. ……………… (14) 

We now proceed to derive the Hamiltonian for the discrete Eq. (14) defined as : 

𝐻{𝑛}(𝑡) = 𝜕{
𝐿{𝑛}(𝑡)

𝜕(𝜕Φ{𝑛,𝑖𝑗}/𝜕𝑡)
 
𝜕Φ{𝑛,𝑖𝑗}

𝜕𝑡
  − 𝐿{𝑛}(𝑡) ……………… (15) 

and whose the expression is explicitly given by 

𝐻{𝑛}(𝑡) = −𝑛𝐼 ∑ −𝜔0Φ{𝑛,𝑖𝑗}
∗ Φ{𝑛,𝑖𝑗} + 𝑆

𝑓
{𝑖𝑗} 𝛼∗Φ{𝑛,𝑖𝑗}

∗ Φ{𝑛,𝑖−1,𝑗} +  𝑆𝛼
∗Φ{𝑛,𝑖𝑗}

∗ Φ{𝑛,𝑖,𝑗−1}  +  𝑆𝛼Φ{𝑛,𝑖𝑗}
∗ Φ{𝑛,𝑖+1,𝑗} +

𝑆𝛼Φ{𝑛,𝑖𝑗}
∗ Φ{𝑛,𝑖,𝑗+1} −

𝛼

2
(𝑛 − 1)[Φ{𝑛,𝑗}

∗ Φ{𝑛,𝑖−1,𝑗}
∗ Φ{𝑛,𝑖𝑗}Φ{𝑛,𝑖𝑗} + Φ{𝑛,𝑖𝑗}

∗ Φ{𝑛,𝑖,𝑗−1}
∗ Φ{𝑛,𝑖𝑗}Φ{𝑛,𝑖𝑗}]  −

𝛼∗

2
(𝑛 −

1)[Φ{𝑛,𝑖𝑗}
∗ Φ{𝑛,𝑖+1,𝑗}

∗ \𝑃ℎ𝑖{𝑛,𝑖𝑗}\𝑃ℎ𝑖{𝑛,𝑖𝑗} + Φ{𝑛,𝑖𝑗}
∗ Φ{𝑛,𝑖,𝑗+1}

∗ Φ{𝑛,𝑖𝑗}Φ{𝑛,𝑖𝑗}] + 𝐽2(𝑛 − 1)[Φ{𝑛,𝑖𝑗}
∗ Φ{𝑛,𝑖−1,𝑗}

∗  Φ{𝑛,𝑖𝑗}Φ{𝑛,𝑖−1,𝑗} +

Φ{𝑛,𝑖𝑗}
∗ Φ{𝑛,𝑖,𝑗−1}

∗  Φ{𝑛,𝑖𝑗}Φ{𝑛,𝑖,𝑗−1}]],  ……………… (16) 

which is identified as the total ’energy’ of the system in a real application. 

3. Reduction of the equation of motion: 2D-Extended NLS equation 

In this section, we use the semi-discrete multiple-scale method [26] to solve Eq.(14) approximately, by first seeking 
modulated wave solutions of the form: 

Φ{𝑖𝑗}(𝑡) = 𝜓{𝑖𝑗}(𝑡)𝑒𝑥𝑝 (𝜃{𝑖𝑗}(𝑡))  ……………… (17) 
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where 𝜃𝑖𝑗(𝑡)  =  𝑘1𝑖𝑎 +  𝑘2𝑗𝑎 −  𝜔𝑡 stands for the phase of the carrier wave, which leads Eq. (14) to 

𝐼
𝑑Ψ{𝑖𝑗}

𝑑𝑡
+ (𝜔 − 𝜔0)Ψ{𝑖𝑗} + 𝑆√𝐽1

2 + 𝐷2[(Ψ{𝑖−1,𝑗} +Ψ{𝑖+1,𝑗})𝑐𝑜𝑠(𝑎(𝑘0 + 𝑘1)) + (Ψ{𝑖,𝑗−1} + 

Ψ{𝑖,𝑗+1})𝑐𝑜𝑠(𝑎(𝑘0 + 𝑘2))  + 𝐼(Ψ{𝑖+1,𝑗} −Ψ{𝑖−1,𝑗})𝑠𝑖𝑛(𝑎(𝑘0 + 𝑘1)) + 𝐼(Ψ{𝑖,𝑗+1} − 

Ψ{𝑖,𝑗−1}) 𝑠𝑖𝑛(𝑎(𝑘0 + 𝑘2))] −
(𝑛 − 1)√𝐽1

2 + 𝐷2

2
[Ψ{𝑖𝑗}

2 [ (Ψ{𝑖−1,𝑗}
∗ +Ψ{𝑖+1,𝑗}

∗ )𝑐𝑜𝑠( 𝑎(𝑘0 + 𝑘1)) + 

(Ψ{𝑖,𝑗−1}
∗ +Ψ{𝑖,𝑗+1}

∗ )𝑐𝑜𝑠(𝑎(𝑘0 + 𝑘2)) + 𝐼(Ψ{𝑖−1,𝑗}
∗ −Ψ{𝑖+1,𝑗}

∗ )𝑠𝑖𝑛(𝑎(𝑘0 + 𝑘1)) + 

𝐼 (Ψ{𝑖,𝑗−1}
∗ −Ψ{𝑖,𝑗+1}

∗ )𝑠𝑖𝑛(𝑎(𝑘0 + 𝑘2))] + (|Ψ{𝑖+1,𝑗+1}|
2
Ψ{𝑖+1,𝑗+1} + |Ψ{𝑖−1,𝑗−1}|

2
Ψ{𝑖−1,𝑗−1}) 𝑐𝑜𝑠( 𝑎(𝑘0 + 

𝑘1 + 𝑘2) )) + 𝐼 (|Ψ{𝑖+1,𝑗+1}|
2
Ψ{𝑖+1,𝑗+1} − |Ψ{𝑖−1,𝑗−1}|

2
Ψ{𝑖−1,𝑗−1}) 𝑠𝑖𝑛( 𝑎(𝑘0 + 𝑘1 + 𝑘2)))) ] + 

𝐽2(𝑛 − 1) (|Ψ{𝑖−1,𝑗}|
2
+ |Ψ{𝑖,𝑗−1}|

2
+ |Ψ{𝑖+1,𝑗}|

2
+ |Ψ{𝑖,𝑗+1}|

2
)Ψ{𝑖𝑗} = 0. ……………… (18) 

with 𝑘0  =
1

𝑎
 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝐷

𝐽1
). The basic of semi-discrete approximation is assumption that envelope function Ψ is regarded 

as continuum variable. In this approximation, therefore, we need to adopt the continuum approximation for Ψij(t) ≡ 
Ψ(x, y, τ), with τ = t, and 𝑥 =  𝑖𝑎 − 𝑣𝑔1𝑡, 𝑦 =  𝑗𝑎 −  𝑣𝑔2𝑡.  Next, we power expand Ψij±1 to 

second order as: 

Ψ{𝑖±1𝑗} = Ψ ±
𝜕Ψ

𝜕𝑥
+

𝑎2

2

𝜕2Ψ

𝜕𝑥2
,  Ψ{𝑖𝑗±1} = Ψ ±

𝜕Ψ

𝜕𝑦
+

𝑎2

2

𝜕2Ψ

𝜕𝑦2
………………(19) 

which leads Eq.(18) to: 

𝐼 (
𝜕Ψ

𝜕𝜏
− 𝑣{𝑔1}

𝜕Ψ

𝜕𝑥
− 𝑣{𝑔2}

𝜕Ψ

𝜕𝑦
) + [𝜔 − 𝜔0 + 2𝑆√𝐽1

2 + 𝐷2 (𝑐𝑜𝑠(𝑎(𝑘0 + 𝑘1)) +\𝑐𝑜𝑠(𝑎(𝑘0 + 𝑘2)))]Ψ 

𝑆√𝐽1
2 + 𝐷2 [𝑎2

𝜕2Ψ

𝜕𝑥2
𝑐𝑜𝑠(𝑎(𝑘0 + 𝑘1)) + 𝑎

2
𝜕2Ψ

𝜕𝑦2
𝑐𝑜𝑠(𝑎(𝑘0 + 𝑘2)) + 2𝐼𝑎

𝜕Ψ

𝜕𝑥
𝑠𝑖𝑛(𝑎(𝑘0 + 𝑘1)) + 2𝐼𝑎

𝜕Ψ

𝜕𝑦
𝑠𝑖𝑛(𝑎(𝑘0 + 𝑘2))]

−
(𝑛 − 1)𝑎2√𝐽1

2 + 𝐷2

2
[Ψ2

𝜕2Ψ∗

𝜕𝑥2
𝑐𝑜𝑠( 𝑎(𝑘0 + 𝑘1)) +

𝜕2Ψ∗

𝜕𝑦2
𝑐𝑜𝑠(𝑎(𝑘0 + 𝑘2))

+ (
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
)
2

(|Ψ|2Ψ)𝑐𝑜𝑠( 𝑎(𝑘0 + 𝑘1 + 𝑘2))] + 𝐽2(𝑛 − 1) (
𝜕2|Ψ|2

𝜕𝑥2
+
𝜕2|Ψ|2

𝜕𝑦2
)Ψ − 

(𝑛 − 1) [√𝐽1
2 + 𝐷2 (𝑐𝑜𝑠( 𝑎(𝑘0 + 𝑘1)) + 𝑐𝑜𝑠( 𝑎(𝑘0 + 𝑘2)) + 𝑐𝑜𝑠( 𝑎(𝑘0 + 𝑘1 + 𝑘2)))  − 4𝐽2] |Ψ|

2Ψ+

𝐼𝑎(𝑛 − 1)√𝐽1
2 + 𝐷2 [( 

𝜕|Ψ|2

𝜕𝑥
+

𝜕|Ψ|2

𝜕𝑦
) 𝑠𝑖𝑛( 𝑎(𝑘0 + 𝑘1 + 𝑘2)) − Ψ

2 (
𝜕Ψ∗

𝜕𝑥
𝑠𝑖𝑛(𝑎(𝑘0 + 𝑘1)) +

𝜕Ψ∗

𝜕𝑦
𝑠𝑖𝑛(𝑎(𝑘0 + 𝑘2)))] = 0.  

      ……………… (20) 

For the weak amplitude quantum breathers with constant shape, Eq. (20) leads to the dispersion relation: 

𝜔 = 𝜔0 − 2𝑆√{𝐽1
2 + 𝐷2} (𝑐𝑜𝑠((𝑘1 + 𝑘0)𝑎) + 𝑐𝑜𝑠((𝑘2 + 𝑘0)𝑎))……………… (21) 
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Figure 1 The dispersion curves of linear spin waves for different values of D=J1. In all cases, we 
fix 𝐽1  =  0.4 and  𝐽2  =  0.45. (a) 𝐷/𝐽1  =  0, (b) 𝐷/𝐽1  =  0.8 

This dispersion relation, plotted in Fig(1) is the band pass filter, with the maximum  𝜔max = 𝜔0 + 4𝑆√{𝐽1
2 + 𝐷2} , 

obtained at k1 = k2 = π/a-k0, and the minimum 𝜔min = 𝜔0 − 4𝑆√{𝐽1
2 + 𝐷2} , obtained at k1 = k2 = -k0. From the 

dispersion relation (21), the coordinate of group velocity in x and y directions can easily been found as: 

𝑣{𝑔1} =
𝑑𝜔

𝑑𝑘1
= 2𝑆𝑎√{𝐽1

2 + 𝐷2}𝑠𝑖𝑛((𝑘1 + 𝑘0)𝑎), 𝑣{𝑔2} =
𝑑𝜔

𝑑𝑘2
= 2𝑆𝑎√{𝐽1

2 + 𝐷2}𝑠𝑖𝑛((𝑘2 + 𝑘0)𝑎) ……………… (22) 

Taking into account the dispersion relation (21) and group velocity coordinates (22) into Eq.(20), one has: 

𝐼
𝜕Ψ

𝜕𝜏
+ 𝑃𝑥

𝜕2Ψ

𝜕𝑥2
+ 𝑃𝑦

𝜕2Ψ

𝜕𝑦2
+ 𝑄|Ψ|2Ψ+Ψ2  (γ{1x}

𝜕2Ψ∗

𝜕𝑥2
+ γ{1y}

𝜕2Ψ∗

𝜕𝑦2
) + γ2 (

𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
)
2
(|Ψ|2Ψ) + γ3 (

𝜕2|Ψ|2

𝜕𝑥2
+

𝜕2|Ψ|2

𝜕𝑦2
)Ψ +

I [( 
𝜕(|Ψ|2Ψ)

𝜕𝑥
+

𝜕(|Ψ|2Ψ)

𝜕𝑦
) χ1  − Ψ

2 (χx
𝜕Ψ∗

𝜕𝑥
+ χy

𝜕Ψ∗

𝜕𝑦
)] = 0 ……………… (23) 

With  

𝑃𝑥 = 𝑆𝑎
2√𝐽1

2 + 𝐷2𝑐𝑜𝑠((𝑘1 + 𝑘0)𝑎), 𝑃𝑦 = 𝑆𝑎
2𝑆√𝐽1

2 + 𝐷2𝑐𝑜𝑠((𝑘2 + 𝑘0)𝑎), 𝑄 = (𝑛 − 1) (4𝐽2 − 𝑆√𝐽1
2 + 𝐷2 (𝑐𝑜𝑠( 𝑎(𝑘0 +

𝑘1))+< 𝑐𝑜𝑠( 𝑎(𝑘0 + 𝑘2)) + 𝑐𝑜𝑠( 𝑎(𝑘0 + 𝑘1 + 𝑘2)))) , 𝜒𝑥 =
𝑛−1

2𝑆
𝑣{𝑔1}, 𝜒𝑦 =

𝑛−1

2𝑆
𝑣{𝑔2}, 𝜒1 = 𝑎(𝑛 − 1)√𝐽1

2 + 𝐷2𝑠𝑖𝑛(𝑎(𝑘0 +

𝑘1 + 𝑘2)), 𝛾{1𝑥} = −
(𝑛−1)

2𝑆
𝑃𝑥 , 𝛾{1𝑦} = −

(𝑛−1)

2𝑆
𝑃𝑦 , 𝛾2 = −

(𝑛−1)

2
𝑎2√𝐽1

2 + 𝐷2𝑐𝑜𝑠( 𝑎(𝑘0 + 𝑘1 + 𝑘2)), 𝛾3 = 𝐽2(𝑛 − 1)……………… 

(24) 

4. Solution of the Extended NLS equation 

4.1. Preliminary: 2D ordinary solitons 

 
For weak value of a, that is for a ≡ 0, Eq.(23) reduces to 

𝐼
𝜕Ψ

𝜕𝜏
+ 𝑃𝑥

𝜕2Ψ

𝜕𝑥2
+ 𝑃𝑦

𝜕2Ψ

𝜕𝑦2
+ 𝑄|Ψ|2Ψ = 0. ……………… (25) 

admitting as solution the 2D transverse pulse soliton: 

Ψ(𝑥, 𝑦, 𝜏) = Ψ0𝑠𝑒𝑐ℎ(𝜇1𝑥 + 𝜇2𝑦 − 𝑣𝑒𝜏)𝑒𝑥𝑝 (𝐼(𝜂1𝑥 + 𝜂2𝑦 − 𝑣𝑝𝜏))……………… (26) 
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Figure 2 Profile of 2D pulse soliton given by Eq.(26). with parameters 𝑃𝑥  =  0.5, 𝑃𝑦  =  0.2, Q = 1 and 𝛹0  =  0.5, (a): 

µ1 = 0, (b): µ𝟏  =  0.2. (c) µ𝟏  =  0.4, (d) µ1  =  0.5, while µ𝟐 is deduced from Eq.(28) 

where 𝑣𝑒  and 𝑣𝑝 are the envelope and phase velocities, with 

𝑣𝑒 = 2𝑃𝑦𝜇2𝜂2 + 2𝑃𝑥𝜇1𝜂1, 𝑣𝑝 = 𝑃𝑥(𝜂1
2 − 𝜇1^2) + 𝑃𝑦(𝜂2

2 − 𝜇2
2)……………… (27) 

while 𝜇1 and 𝜇2 are related to soliton widths, obeying the constraints 𝑃𝑥𝜇1
2 + 𝑃𝑦𝜇2

2 =
𝑄

2
Ψ0
2. By setting 𝜇1 = 𝜇𝑐𝑜𝑠(𝜗), 𝜇2 =

𝜇𝑠𝑖𝑛(𝜗), one has 

𝜇 = Ψ0√
𝑄

2(𝑃𝑥𝑐𝑜𝑠
2(𝜗)+𝑃𝑦𝑠𝑖𝑛

2(𝜗))
. ……………… (28) 

The profile of this solution is given by Fig.2. It is obvious that this equation has a solution if PxQ > 0 and/or PyQ > 0 since 
ϑ is a free variable. In Fig.(5), one has in yellow color the domain where PxQ > 0 and PyQ > 0, and then 2-D pulse soliton 
can exist ∀ϑ. Otherwise the green color is obtained for PxPyQ < 0, and 2-D pulse soliton can exist only for some values 
of ϑ. By taking into account the normalization condition in the transverse direction z = aµ(i cos(ϑ) + j cos(ϑ)), it is obvious 
that: 

𝜌 = ∑ ∑ |Φ{𝑛,𝑖,𝑗}(𝑡)|^
{𝑓2}
{𝑗=1}

{𝑓1}
{𝑖=1} 2 =

Ψ0
2

𝑎𝜇
∫ 𝑠𝑒𝑐ℎ2
{∞}

{−∞}
(𝑧)𝑑𝑧 =

2Ψ0
2

𝑎𝜇
= 1, ……………… (29) 

leading by taking into account to Eq.(28) to the soliton amplitude 

Ψ0 =
𝑎

2√
𝑄

2(𝑃𝑥𝑐𝑜𝑠
2(𝜗)+𝑃𝑦𝑠𝑖𝑛

2(𝜗))
. ……………… (30) 

Remembering to original variables, it is obvious that! 

Φ{𝑖𝑗}(𝑡) = Ψ0𝑠𝑒𝑐ℎ[𝑎𝜇(𝑖𝑐𝑜𝑠(𝜗) + 𝑗𝑠𝑖𝑛(𝜗)) − (𝑣𝑒 + 𝜇(𝑣{𝑔1}𝑐𝑜𝑠(𝜗) + 𝑣{𝑔2}𝑠𝑖𝑛(𝜗)) )𝑡 ]𝑒𝑥𝑝 𝐼[(𝑘1  + 𝜂1 )𝑖𝑎 +

(𝑘2  + 𝜂2)𝑗𝑎 − (𝜔 + 𝜂1 𝑣{𝑔1} + 𝜂2𝑣{𝑔2} + 𝑣𝑝)𝑡]……………… (31) 

For the stationary breather, one has 𝑣𝑒  +  µ(𝑣𝑔1 𝑐𝑜𝑠(𝜗) + 𝑣𝑔2 𝑠𝑖𝑛(𝜗))  =  0. By substituting Eq. (31) into Eq. (11) and 

using Eq.(30), one can construct the following Hartree product eigenstates: 
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|Ψ𝑛(𝑡)〉
{(𝐻)} =

1

√𝑛!
𝑒𝑥𝑝(−𝑛𝐼(𝜔 + 𝜂1 𝑣{𝑔1} + 𝜂2 𝑣{𝑔2} + 𝑣𝑝)𝑡)Ψ0

𝑛 (∑ ∑ (𝑠𝑒𝑐ℎ[𝑎𝜇(𝑖𝑐𝑜𝑠(𝜗) + 𝑗𝑠𝑖𝑛(𝜗))]
𝑓
{𝑗=1}

𝑓
{𝑖=1} 𝑒𝑥𝑝 𝐼[(𝑘1 +

𝜂1)𝑖𝑎 + (𝑘2 + 𝜂2)𝑗𝑎]𝑎{𝑖𝑗}
† )

𝑛

 |0〉. ……………… (32) 

We can then obtain the mean number of bosons on 𝑧{𝑖𝑗} = 𝑖𝑐𝑜𝑠(𝜗) + 𝑗𝑠𝑖𝑛(𝜗) direction, which has the following form 

〈𝑛{𝑖𝑗}(𝑡)〉
{(𝐻)} = 〈Ψ𝑛(𝑡)|𝑎{𝑖𝑗}

+  𝑎{𝑖𝑗}|Ψ𝑛(𝑡)〉 |Ψ𝑛(𝑡)〉
{(𝐻)}, that is: 

〈𝑛{𝑖𝑗}(𝑡)〉
{(𝐻)} = 𝑛

𝑎2

8

𝑄

(𝑃𝑥𝑐𝑜𝑠
2(𝜗)+𝑃𝑦𝑠𝑖𝑛

2(𝜗))
𝑠𝑒𝑐ℎ2 [

𝑎2

4

𝑄

(𝑃𝑥𝑐𝑜𝑠
2(𝜗)+𝑃𝑦𝑠𝑖𝑛

2(𝜗))
 𝑧{𝑖𝑗}].  ……………… (33) 

By taking into account Eq.(31) into Eq.(16), the energy can be calculated by taking the integration in the transverse 
direction zij as 𝐸𝑛 =  ⟨𝛹𝑛(𝑡)|𝐻|𝛹𝑛(𝑡)⟩𝐻 to give: 

𝐸𝑛 = 𝑛
𝑎4

48

𝑄2

(𝑃𝑥𝑐𝑜𝑠
2(𝜗)+𝑃𝑦𝑠𝑖𝑛

2(𝜗))
2 {𝑣{𝑔1} 𝑐𝑜𝑠(𝜗) + 𝑣{𝑔2}𝑠𝑖𝑛(𝜗) +

2(𝑛−1)𝑎

5
[2𝐽2 − √𝐽1

2 + 𝐷2 (𝑐𝑜𝑠(𝑎(𝑘0 + 𝑘1 + 𝜂1)) +

𝑐𝑜𝑠(𝑎(𝑘0 + 𝑘2 + 𝜂2)))]}. ……………… (34) 

It is obvious that the energy is a function of n and then is quantized (see Fig.3). This energy is plotted in Fig.(3). 
Another form of solution is the dark solitary wave given by 

Ψ(𝑥, 𝑦, 𝜏) = Ψ0𝑡𝑎𝑛ℎ(𝜇1𝑥 + 𝜇2𝑦 − 𝑣𝑒𝜏)𝑒𝑥𝑝 (𝐼(𝜂1𝑥 + 𝜂2𝑦 − 𝑣𝑝𝜏)) ……………… (35) 

With 

𝑣𝑒 = 2𝑃𝑦𝜇2𝜂2 + 2𝑃𝑥𝜇1𝜂1, 𝑣𝑝 = 𝑃𝑥  (𝜂1
2 + 2𝜇1

2) + 𝑃𝑦(𝜂2
2 + 2𝜇2

2) ……………… (36) 

with the constraints 𝑃𝑥𝜇1
2 + 𝑃𝑦𝜇2

2 = −
𝑄

2
Ψ0
2. By setting again 𝜇1 = 𝜇𝑐𝑜𝑠(𝜗), 𝜇2 = 𝜇𝑠𝑖𝑛(𝜗), it is obvious that 

 

Figure 3 Contour plot of the energy given by Eq.(34), with the same parameters as in Fig.(1) and with 𝐷/𝐽1  =  0.8, 
with µ2  =  0, 𝜂1  =  µ1, 𝜂2  =  µ2 (a) n = 5, (b): n = 15. (1): 𝜗 =  0, (2): 𝜗 = 𝜋/6, (3): 𝜗 = 𝜋/3 
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𝜇 = Ψ0√
−𝑄

2(𝑃𝑥𝑐𝑜𝑠
2(𝜗)+𝑃𝑦𝑠𝑖𝑛

2(𝜗))
. ……………… (37) 

The profile of this solution is given by Fig.4. In Fig.(5), one has in blue color the domain where PxQ < 0 and PyQ < 0, and 
then 2-D dark soliton exists ∀ϑ. Let us find Ψ(x, y, τ) with linear phase in polar coordinate, 𝛹(𝑥, 𝑦, 𝜏)  =
 𝑓(𝑥, 𝑦, 𝜏) 𝑒𝑥𝑝[𝐼(𝜂1𝑥 + 𝜂2𝑦 −  𝑣𝑝𝜏)], leading by equating the real and imaginary parts of Eq.(23) to the following set of 

ordinary differential equations: 

𝜕f

𝜕𝜏
+ 2[𝜂1 𝑃𝑥 + (−𝛾{1𝑥}𝜂1  + 3𝛾2(𝜂1 + 𝜂2)  + 3𝜒1 − 𝜒𝑥)𝑓

2]  
𝜕f

𝜕𝑥
+ 2[𝑃𝑦𝜂2 + (−𝛾{1𝑦}𝜂2  + 3𝛾2(𝜂1 + 𝜂2) + 3𝜒1 −

𝜒𝑦)𝑓
2]

𝜕f

𝜕𝑦
= 0 ……………… (38) 

𝑓(𝑣𝑝 − 𝑃𝑥𝜂1
2 − 𝑃𝑦𝜂2

2) + (𝑃𝑥 + 𝛾{1𝑥}𝑓
2)

𝜕2f

𝜕𝑥2
+ (𝑃𝑦 + 𝛾{1𝑦}𝑓

2)
𝜕2f

𝜕𝑦2
+ (𝑄 − 𝛾{1𝑥}𝜂1

2 − 𝛾{1𝑦}𝜂2
2 − 𝛾2(𝜂1 + 𝜂2)

2 −

𝜒1(𝜂1 + 𝜂2) − (𝜂1𝜒𝑥 + 𝜂2𝜒𝑦)) 𝑓
3 + 3𝛾2𝑓

2 (
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
)
2

𝑓 + 6𝛾2𝑓 (
𝜕f

𝜕𝑥
+

𝜕f

𝜕𝑦
)
2

+ 𝛾3𝑓 (
𝜕2f2

𝜕𝑥2
+

𝜕2f2

𝜕𝑦2
) = 0………………(39) 

Equation (39) is rich and can inspire researchers to analyze and find the solutions of this class of partial differential 
equation. 

4.2. Exotic solitons as solution: Bright compacton and peakon-like quantum soliton 

Looking for traveling wave solutions in the form f(x, y, t) = f(z) with z =x cos(ϑ) + y sin(ϑ) - veτ, where ve is the envelope 
velocity, the above system is transformed into the following system of nonlinear ordinary differential equation: 

{−𝑣𝑒 + 2(𝜂1 𝑃𝑥  𝑐𝑜𝑠(𝜗) + 𝜂2 𝑃𝑦 𝑠𝑖𝑛(𝜗))  + 2[(−𝛾{1𝑥}𝜂1  + 3𝛾2(𝜂1 + 𝜂2) + 3𝜒1 − 𝜒𝑥)𝑐𝑜𝑠(𝜗) (−𝛾{1𝑦}𝜂2  + 3𝛾2(𝜂1 + 𝜂2) +

3𝜒1 − 𝜒𝑦)𝑠𝑖𝑛(𝜗)]𝑓
2}𝑓′ = 0 ……………… (40) 

[𝑃𝑥  𝑐𝑜𝑠
2(𝜗) + 𝑃𝑦 𝑠𝑖𝑛

2(𝜗) + 𝑓2(𝛾{1𝑥}𝑐𝑜𝑠
2(𝜗) + 𝛾{1𝑦}𝑠𝑖𝑛

2(𝜗) + 3𝛾2(1 + 𝑠𝑖𝑛(2𝜗)) + 2𝛾3) ]𝑓′′ + (𝑄 − 𝛾{1𝑥}𝜂1
2 − 𝛾{1𝑦}𝜂2

2 −

𝛾2(𝜂1 + 𝜂2)
2 − 𝜒1(𝜂1 + 𝜂2) − (𝜂1𝜒𝑥 + 𝜂2𝜒𝑦)) 𝑓

3 + 2[3𝛾2(1 + 𝑠𝑖𝑛(2𝜗)) + 𝛾3] 𝑓𝑓
′2  + 𝑓(𝑣𝑝 − 𝑃𝑥𝜂1

2 − 𝑃𝑦𝜂2
2) = 0 

 ……………… (41) 

where the prime indicates the derivatives with respect to z. From Eq.(40), it is obvious that 

𝑣𝑒 = 2(𝜂1𝑃𝑥  𝑐𝑜𝑠(𝜗) + 𝜂2 𝑃𝑦 𝑠𝑖𝑛(𝜗)),  ……………… (42) 

and 

(3𝛾2(𝜂1 + 𝜂2) + 3𝜒1 − 𝜒𝑥 − 𝛾{1𝑥}𝜂1)𝑐𝑜𝑠(𝜗) + (3𝛾2(𝜂1 + 𝜂2) + 3𝜒1 − 𝜒𝑦 − 𝛾{1𝑦}𝜂2)𝑠𝑖𝑛(𝜗) = 0 ……………… (43) 
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Figure 4 Profile of 2D Dark soliton given by Eq.(35). with parameters 𝑃𝑥  =  0.5, 𝑃𝑦  =  0.2, 𝑄 =  −1 and 𝛹0 =  0.5, 

(a): µ𝟏  =  0, (b): µ𝟏  =  0.2. (c) µ𝟏  =  0.4, (d) µ𝟏  =  0.5, while µ𝟐 is deduced from Eq.(37) 

4.2.1. Pulse compacton-like quantum signal 

Let us mention that, pulse compacton is the solution of Eq.(52) whether f ≡ 0 is unconditionally the solution of Eq.(52), 
leading to the constraints𝑃𝑥𝑐𝑜𝑠

2(𝜗) + 𝑃𝑦𝑠𝑖𝑛
2(𝜗) = 0, leading then to a compact bright soliton as a solution in the form 

[6]: 

  
 

Figure 5 Domain of existence of Pulse and dark solitudes according to Eqs.(28,37). In all cases, 
we fix 𝐽1  =  0.4 and 𝐽2  =  0.45, n = 20 and S = 15. (a) 𝐷/𝐽1  =  0.8, (b) 𝐷/𝐽1  =  0.0. 

𝑓(𝑧) = {
𝐴0𝑐𝑜𝑠(𝜇(𝑧 − 𝑧0)), 𝑖𝑓 |𝑧 − 𝑧0| ≤

𝜋

2𝛾
,

0, 𝑒𝑙𝑠𝑒
………………(44) 

With 
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𝜇2 =
(𝑄−𝛾{1𝑥}𝜂1

2−𝛾{1𝑦}𝜂2
2−𝛾2(𝜂1+𝜂2)

2−𝜒1(𝜂1+𝜂2)−(𝜂1𝜒𝑥+𝜂2𝜒𝑦))

 𝛾{1𝑥}𝑐𝑜𝑠
2(𝜗)+𝛾{1𝑦}𝑠𝑖𝑛

2(𝜗)+9𝛾2(1+𝑠𝑖𝑛(2𝜗))+4𝛾3
………………(45) 

With 

𝑣𝑝 = 𝜇
2 [𝑃𝑥  𝑐𝑜𝑠

2(𝜗) + 𝑃𝑦𝑠𝑖𝑛
2(𝜗) + 𝐴0

2 (
3

4
𝛾2(1 + 𝑠𝑖𝑛(2𝜗)) + 𝛾3 +

3

4
(𝛾{1𝑥}𝑐𝑜𝑠

2(𝜗) + 𝑠𝑖𝑛2(𝜗)𝛾{1𝑦})) ] 

+
3

4
𝐴0
2 [(𝛾{1𝑥} + 𝛾2)𝜂1

2 + (𝛾{1𝑦} + 𝛾2)𝜂2
2 − 𝑄 + 𝜂1𝜂2𝛾2 + 𝜂1(𝜒1 + 𝜒𝑥) +

3

4
𝜂2(𝜒1 + 𝜒𝑦) ] + 𝑃𝑥  𝜂1

2 + 𝑃𝑦𝜂2
2.  (46) 

Compact solution (44) satisfies the normalization condition  

𝜌 = ∑ ∑ |Φ{𝑛,𝑖,𝑗}(𝑡)|
2{𝑓2}

{𝑗=1}
{𝑓1}
{𝑖=1} =

𝐴0
2

𝑎
∫  𝑐𝑜𝑠2(𝜇 (𝑧 − 𝑧0))𝑑𝑧
{𝑧0+

𝜋

2𝜇
}

{𝑧0−
𝜋

2𝜇
}

=
𝜋 𝐴0

2

2𝛾 𝑎
= 1………………(47) 

leading that 𝐴0 =  √2µ𝑎/𝜋 . Remembering to original variable, it is obvious that:  

Ψ(𝑥, 𝑦, 𝜏) =

{
 
 

 
 √

2𝜇 𝑎

𝜋
𝑐𝑜𝑠(𝜇(𝑥𝑐𝑜𝑠(𝜗) + 𝑦𝑠𝑖𝑛(𝜗) − 𝑣𝑒𝜏))𝑒𝑥𝑝 [𝐼(𝜂1𝑥 + 𝜂2𝑦 − 𝑣𝑝𝜏)],

𝑖𝑓 𝜇|𝑥𝑐𝑜𝑠(𝜗) + 𝑦𝑠𝑖𝑛(𝜗) − 𝑣𝑒𝜏| ≤
𝜋

2𝜇
.

0, 𝑒𝑙𝑠𝑒

 ……………… (48) 

The profile of this solution is shown in Fig(6). One can here construct the following Hartree product eigenstates:  

|Ψ𝑛(𝑡)〉
{(𝐻)} =

1

√𝑛!
𝑒𝑥𝑝(−𝑛𝐼(𝜔 + 𝜂1 𝑣{𝑔1} + 𝜂2𝑣{𝑔2} + 𝑣𝑝)𝑡) (

2𝜇 𝑎

𝜋
)

𝑛

2
(∑ ∑ (cos[𝑎𝜇(𝑖𝑐𝑜𝑠(𝜗) +

𝑓
{𝑗=1}

𝑓
{𝑖=1}

𝑗𝑠𝑖𝑛(𝜗))]] 𝑒𝑥𝑝 𝐼[(𝑘1 + 𝜂1)𝑖𝑎 + (𝑘2 + 𝜂2)𝑗𝑎]𝑎{𝑖𝑗}
† )

𝑛
|0〉. 𝑖𝑓 |𝑖𝑐𝑜𝑠(𝜗) + 𝑗𝑠𝑖𝑛(𝜗)| ≤  

𝜋

2𝑎𝜇
. ……………… (49) 

 

Figure 6 Profile of 2D Pulse compacton given by Eq.(48). with parameters µ =  0.2, 𝑎1  =
√𝟑

𝟐
, 

𝑎2  =  1/2 and a = 1. 

4.3. 2D- Peakon-like quantum signal 

Next, assuming a peak soliton as a solution in the form : 
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𝑓(𝑧) = 𝛽𝑒𝑥𝑝(−𝜇 |𝑧 − 𝑧0|), ……………… (50) 

one has the phase velocity: 

𝑣𝑝 = 𝑃𝑥𝜂1
2 + 𝑃𝑦𝜂2

2 − 𝜇2 (𝑃𝑥  𝑐𝑜𝑠
2(𝜗) + 𝑃𝑦 𝑠𝑖𝑛

2(𝜗))……………… (51) 

and the widths 

𝜇2 = −
(𝑄−𝛾{1𝑥}𝜂1

2−𝛾{1𝑦}𝜂2
2−𝛾2(𝜂1+𝜂2)

2−𝜒1(𝜂1+𝜂2)−(𝜂1𝜒𝑥+𝜂2𝜒𝑦))

 𝛾{1𝑥}𝑐𝑜𝑠
2(𝜗)+𝛾{1𝑦}𝑠𝑖𝑛

2(𝜗)+9𝛾2(1+𝑠𝑖𝑛(2𝜗))+4𝛾3
.  ……………… (52) 

The above solution must satisfy the normalization condition (12), one has 

𝜌 = ∑ ∑ |Φ{𝑛,𝑖𝑗}(𝑡)|
2𝑓2

{𝑗=1}
𝑓1
{𝑖=1} = 𝜌 = ∑ ∑ |Φ{𝑛,𝑖,𝑗}(𝑡)|

2{𝑓2}
{𝑗=1}

{𝑓1}
{𝑖=1} =

𝛽2

𝑎
∫ 𝑒𝑥𝑝
{+∞}

{−∞}
(−2𝜇|𝜂|)𝑑𝑧 =

𝛽2

𝜇𝑎
= 1, ……………… (53) 

leading to the peakon amplitude 𝛽 =  √µ𝑎. 

5. Conclusion 

In this paper we have studied the 2-D compacton and 2-D peakon-like quantum states in a two-dimensional ferromagnet 
XXZ spin chain with Dzyaloshinsky-Moriya interaction. Based on the time-dependent Hartree approximation, we have 
shown that the quantum states may be governed by the 2-D discrete nonlinear Schrödinger (DNLS) equation. Next, 
using the semi-discrete multiple-scale method, we have shown that the 2-D DNLS can be reduced to the 2-D continuum 
extended nonlinear Schrödinger (ENLS) equation which consists of the basic NLS equation with additional nonlinear 
dispersive terms, admitting two types of exact solitary wave as solutions: The 2-D bright compacton and 2-D peakon as 
eigenstates, according to the relative magnitude of its coefficients. Next we have found the energy levels formula of these 
quantum pulse soliton is quantized. We found also that on the contrary to results found for the classical cases where 
initial amplitudes of both solutions are free parameters, the initial amplitudes are not free parameters since the 
obtained solutions need to be normalized.  
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