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Abstract 

Federated Learning (FL) has emerged as a promising approach to collaborative machine learning without the need to 
share raw data. It enables decentralized model updates while preserving the privacy of each device and reducing the 
communication overhead. This experiment evaluates the effectiveness of the personalized FL algorithms, namely 
FedAvg, APPLE, FedBABU and FedProto, in a decentralized setting, with a particular focus on the Fashion MNIST dataset, 
which is characterized by a non-ideal data distribution. The objective is to identify which algorithm performs optimally 
in image classification tasks. The experimental results show that both FedProto and APPLE have nearly equivalent and 
better performance compared to FedBABU and FedAvg. Interestingly, increasing the number of uploads in FedBABU 
leads to similar results to APPLE and FedProto. However, under limited upload conditions, FedBABU performs similarly 
to FedAvg. These results provide valuable insights into the differential performance of personalized FL algorithms in 
non-id data scenarios and provide guidance for their application in distributed environments, especially in sensitive 
domains such as medical, military and confidential image analysis tasks where privacy and communication efficiency 
are paramount concerns. 
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1. Introduction

Traditional machine learning (ML) methods come with limitations related to data privacy, data storage, and com- 
putational expenses [1]. This raise concerns about privacy and security, as the centralization of data makes them 
susceptible to breaches. Moreover, this centralization requires significant storage capacity and infrastructure, result- 
ing in increased costs and data management complexity. The computational costs associated with central training and 
data processing can be burdensome and time-consuming, limiting scalability and overall efficiency. In addition, the 
transmission of raw data for training purposes can strain bandwidth and be challenging in scenarios with limited 
network connectivity. Traditional ML methods also have difficulties to comply with privacy regulations and data pro- 
tection laws. In response to these issues, FL has emerged as a privacy-preserving alternative that decentralizes data, 
reduces data transfer requirements, prioritizes privacy and minimizes computational overhead [2]. 

FL varies from ML in some key aspects where in ML, data is mostly centralized and stored in a single location, such as a 
cloud or a server platform. On the other hand, in FL the data is distributed on devices or edge servers. FL maintains data 
privacy by keeping it local and not distributing it with a central server, instead exchanging model updates in between 
the central server and devices [3]. Moreover, FL fosters collaborative learning, enabling multiple entities to contribute 
their data and models. FL offers several advantages, including the preservation of privacy by keeping sensitive data on 
the devices, efficient utilization of diverse data distributed across multiple devices, reduced communication costs as 
only model updates are exchanged, enhanced scalability to accommodate numerous devices, and adaptability to 
dynamic environments where devices can join or leave the network without requiring centralized retraining [2]. 
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Nonetheless, conventional FL primarily concentrates on amalgamating model updates from various devices to construct 
a global model. This approach may encounter challenges in terms of personalization and may grapple with the inherent 
diversity in devices and data sources [4]. Personalized federated learning (PFL) overcome the limitations of traditional 
FL by introducing user-specific model updates, considering device heterogeneity and enhancing user trust [5]. 
Customized global models that take into account each user’s preferences are possible with PFL, which enhances 
accuracy and relevance. Additionally, it provides more precise control over privacy and data sharing, boost-ing user 
involvement and confidence. PFL is a potential strategy for a variety of applications since it combines the advantages of 
FL with personalized learning. [6]. 

In the ever-evolving landscape of image classification methodologies, a significant imperative lies in conducting a 
comprehensive study to assess the efficacy of personalized federated learning. This endeavor assumes particular 
relevance in light of the burgeoning significance placed on data privacy and the need to tailor outcomes to individual 
preferences. Consequently, this paper delves into the evaluation of diverse federated learning algorithms deployed for 
image classification tasks. Notably, the primary contribution of this research encompasses a meticulous performance 
comparison of personalized federated learning algorithms: FedAvg [2], APPLE [7], FedBABU [8], and FedProto 

[9] using the Fashion-MNIST dataset [10]. The comparison will give an idea of how PFL algorithms perform on 
heterogeneous image classification tasks in a non-iid setup and which PFL algorithm provides better accuracy. 

The rest of the paper is segmented as follows: Section 2 discussed the related work done in various domains of FL: 
Section 3 described the algorithms used in this experiment; Section 4 analyzed the dataset, experimental set-up and the 
results of the experiment; and finally, Section 5 discussed the overall contribution and conclude the paper. 

2. Related Work 

2.1. Non identical and independently distributed (non-iid) federated learning 

The systemic privacy concerns are reduced by FL which enables clients to cooperatively train a model without sharing 
their data. FedAvg [2] the most used FL method, apply this by aggregating updated copies of global model by using the 
averaging strategy. Due to the worries on FedAvg’s behaviour regarding non-iid data started to raise [11] research has 
been done on FL’s robustness on the non-iid data. In 2020, FedProx was proposed which penalises local update when 
client is in distant from prox-center [11]. Then SCAFFOLD was introduced [12], which uses control variates to adjust 
the local gradient caused by client-drift. To mitigate the effects of data heterogeneity, FedDynp [13] was introduced 
which dynamically changes the regularizer in empirical risk. 

2.2. Heterogeneous federated learning 

The non-iid problem, or statistical heterogeneity among clients, is the biggest obstacle facing FL. To improve each 
client’s local model, FedProx [11] suggested a local regularization term. Recent research [14] trains personalized models 
to take use of both the individualized component and globally available information. The third option is to give 
numerous global models by grouping the local models into different groups or clusters [15]. In order to address the 
issues posed by heterogeneity, self-supervised learning algorithms have recently been integrated into the local training 
phase [16]. For personalized FL, [17] uses a meta-learning technique. Heterogeneous model design is another difficult 
FL situation. Without having access to the local training data and architectures, a collective learning platform is 
developed to manage heterogeneous architectures [18]. 

2.3. Personalized federated learning 

A new branch of FL, the personalized FL, has been created to methodically reduce the influence of data het- erogeneity 
[6]. Personalized FL, especially when the data are taken from multiple distributions, permits alternative models for each 
client rather than being constrained by the global consensus model [7]. The goal of personalized federated learning is 
to acquire locally tailored, individualized models for each client [19]. A logical approach in this line of work is to adjust 
the global model for each client [20]. It was then found that fine-tuning the global model may have a negative impact on 
its ability to generalize to new data [21]. Local models can be created without federation, although this approach has 
data issues. Thus, several additional techniques, like as clustering, multi-task learning, transfer learning, regularized 
loss function, and meta-learning, have been used to FL in order to preserve the advantages of the federation and 
individualized models [19]. Studies have also concentrated on the relationship between FL and meta-learning [22]. In 
addition to methods that need further adjusting the learned models, MOCHA was presented [23] , which makes use of 
multi-task learning to discover the connections between various clients. Furthermore, various technologies and 
algorithms for personalized FL have been presented and studies are going on. 
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3. Algorithms 

The algorithms FedAvg, APPLE, FedBABU, and FedProto are all part of our evaluation. The pseudocode for these 
algorithms is provided in this section. 

3.1. Federated Averaging (FedAvg) 

FedAvg is used for ML model training in a decentralized manner across different divices or clients [2]. The concept is to 
divide the training process over a group of clients rather than gathering all client data on a single server. Each client 
uses its own data to update its local model, which it then sends back to the server. The server then combines all the 
models to create a new global model, which is distributed to the clients to begin a new training cycle. 

Algorithms 1 shows the working procedure of FedAvg. 

Algorithm 1 FedAvg 

1: Fire up the symphony with an initial note w0 

2: for each enchanting round t = 0, 1, . . . do 

3: Summon a magical gathering S t of mystical clients 

4: Let m be the spellbound count, at least one to ensure the cosmic dance 

5: for each mesmerized client k ∈ S t in parallel do 

6: Allow wk      to be crafted through the sacred ritual ClientUpdate(k, wt) 

7: end for 

8: Unleash the unity wt+1 = ∑𝑘 ∈ 𝑆1 
𝑛𝑘

𝑛
Wk 1+1 of their mystical energies 

9: end for  

3.2. Adaptive Personalized Cross-Silo Federated Learning (APPLE) 

APPLE is a personalized cross-silo FL framework that adaptively learns how much each client can benefit from other 
clients models [7]. Like most FL approaches, the training in APPLE progresses in rounds. Each client downloads and 
uploads the model’s parameters throughout each iteration. A core model serves as the foundation for each client’s 
customised model that is uploaded to APPLE. On the central server, the fundamental models that clients upload are 
likewise kept up to date. 

Algorithms 2 shows the working procedure of APPLE. 

3.3. Federated Averaging with Body Aggregation and Body Update (FedBABU) 

FedBABU is a type of FL algorithm that only updates the model’s body while training (the head is initialized randomly 
and never updated), and the head is fixed for personalization in the evaluation process [8]. 

Algorithms 3 shows the working procedure of FedBABU. 

3.4. Federated Prototype Learning (FedProto) 

FedProto or federated prototype learning is a framework where the clients and server communicate abstract class 
prototypes instead of gradients [9]. 

Algorithms 4 shows the working procedure of FedProto. 

To regularize the training of local models, FedProto collects the local prototypes from many customers and aggre- gates 
them before sending the global prototypes back to each client. The training on each client seeks to reduce the 
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classification error on the local data while keeping the resultant local prototypes sufficiently near to the corresponding 
global ones. 

Algorithm 2 Adaptive Personalized Cross-Silo Federated Learning 

 1: Summon N curious minds, each equipped with the elixir of learning rates η1 and η2, a treasure map with R 
 destinations, the magical coefficients λ(r), µ, and the mystical proximal center p0. 
 2: Unleash the spirit of randomness upon N disciples, bestowing upon them the primal essence of knowledge, 

encapsulated in the enigmatic core model wi(c) on the sacred server. 
 3: Ignite the flames of parallelism within each disciple’s soul as they embark on their individual quests, armed 

with local DR vectors pi as companions. 
 4: for r ← 1, 2, . . . , R do 
 5: for i ← 1, 2, . . . , N in a synchronized dance do 
 6: Summons echo from the server, acquiring core models as dictated by destiny. 
 7: Commence the ritual of iterative enlightenment for the local core model w(c) and its loyal companion pi: 
 8: Conjure the personalized model wi(p) through the harmonious blend of pi,j and wj(c). 
 9: Invoke the oracle to reveal the empirical risk Fi(wi(p)), a potion concocted from the sacred elixir of data and 
 the ethereal dance of loss functions. 
 10: Perform the sacred dance of updates, guiding wi(c) and the DR vector pi through the mystical gradients of 

enlightenment. 
 11: Upon the completion of the mystical dance, offer the sanctified local core model wi(c) to the server for 

communion. 
 12end for 
 13: end for 
 14: Emerge Victorious: Receive the personalized models w1(p), w2(p), ..., wN(p), each a unique relic forged in the 

crucible 
 of collective wisdom, bestowed upon the respective disciples. 

Algorithm 3 Federated Averaging with Body Aggregation and Body Update 

1: Initialize the magical global parameters θ0G = {θ0G,ext, θ0G,clx} 

2: for every enchanting round k = 1, . . . , K do 

3: m ← max(⌊N f ⌋, 1) 

4: Ck conjures a random subset of m clients 

5: for each spellbound client Cki ∈ Cki simultaneously do 

6: θik(0) ← θkG−1 = [θk−1G,ext’θ0G,cls]  

7: θki,ext (τIk) ← ClientBodyUpdate(θki(0), τ) 

 8: end for  m 

 9: θKG,ext ← ∑mi=1 
𝑛𝐶𝑘𝑖

𝑛
 θKi,ext(τlki),n=∑mi=1 nCki 

10: end for 

11: return the mystical θKG = {θKG,ext,, θ0G,cls} 

Algorithm 4 Federated Prototype Learning 

1: Harmonize the Essence: Initialize the individual essence Di, the unique harmonizing factor wi, where i gracefully dances 
through the classes 1 to m, and the ethereal global prototype set C¯( j) for each enchanting class. 
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2: for each magical round T = 1, 2, . . . do  

3: for each participant i in parallel do  

4: Ci ← Local Enchantment (i, C¯i)  

5: end for 

6: Unveil the Collective Symphony: Update the global prototype, letting C¯(j) bloom like a garden of shared dreams, 
nurtured by the magical collaboration of all entities in Nj. 

7: Empower Local Identities: Infuse the local essence Ci with the awakened prototypes from [C¯(j)]. 

8: end for 

9: return the transcendent global prototype set C¯(j) 

4. Results and discussion 

4.1. Experimental Setup 

We base our benchmarks on the Fashion MNIST [10] dataset of apparel items with non-iid data distribution. The 
Fashion-MNIST dataset comprises images of various clothing items, including T-shirts, dresses, pants, and shoes. Each 
apparel category within the dataset is composed of 60,000 training images and 10,000 test images. These images are 
grayscale and have dimensions of 28x28 pixels, with pixel values spanning the range from 0 to 255. 

 

Figure 1 Data Non-i.i.d. distribution 

Non-iid data samples are intentionally assigned to specific clients based on their unique characteristics. This 
customization was achieved through a process involving data sorting and segmentation. [2]. The step-by-step pro- cess 
involves organizing the data, dividing it into uniform-sized segments, and subsequently distributing a specified quantity 
of these segments to individual clients. In the case of Fashion MNIST, each of the 20 clients received two segments, each 
comprising 300 data points. Fig. 1 visualizes how our non-iid distributions are different from each other. 

Table 1 Machines specifications 

Machine Central Processing Unit Memory Operating System 

A i9-9900K 31.75 GiB Linux 

B i9-9900K 31.75 GiB Linux 

C i9-10900K 31.76 GiB Linux 

D i9-10900K 31.76 GiB Linux 
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To complete the experiment we used four computers in a star topology, that were Ethernet-connected to one another. 
All computers used Arch Linux 2023.04.01 (x86 64); kernel version 6.2.2-arch1-1. The Table 1 provide lists the details 
of each machine. 

We divided our 20 clients as evenly as we could among all of our distributed benchmarks, using one of our machines as 
the server. Using a convolutional neural network (CNN) artificial neural network architecture that is specifically created 
for image classification tasks of 10 different classes, we cross-validate FedAvg, APPLE, Fed- BABU, and FedProto on the 
Fashion MNIST. The overall design is appropriate for image classification tasks using grayscale input images that are at 
least 28x28 pixels in size. The design has two convolutional layers, each followed by a fully connected layer with a ReLU 
activation function and a max-pooling layer, and an output layer with a soft- max function. Fig. 2 illustrates the 
architecture of artificial neural network used in our experiment. For searching the suitable hyperparameter values, we 
used random searches [24]. The initial set of hyperparameters was directly derived from the default set of 
hyperparameters in [2] for the Fashion MNIST dataset. 

 

Figure 2 Convolutional neural network architecture 

Table 2 Mean test accuracy of four Federated Learning algorithms 

Algorithm Mean test accuracy 

FedAvg 0.7604 

APPLE 0.9921 

FedBABU 0.7462 

FedProto 0.9940 

4.2. Result Analysis 

Table 2 displays the mean top test accuracy outcomes for four Federated Learning techniques used in image 
classification. The algorithms’ effectiveness is ranked according to their mean accuracy scores: FedAvg achieved 
76.04%, APPLE performed exceptionally well with 99.21%, FedBABU scored 74.62%, and FedProto displayed an 
impressive average accuracy of 99.40%. These findings highlight the different capabilities of these algorithms, with 
APPLE and FedProto showing remarkable image classification performance, and FedAvg and FedBABU also deliv- ering 
competitive results. 
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Table 3 Comparisons, signing whether an algorithm in a row is upper (+), lower (), or nearly equal (=) to an algorithm 
in a column. 

 FedAvg APPLE FedBABU FedProto 

FedAvg  - = - 

APPLE 

FedBABU 

+ 

= 

- + = 

- 

FedProto + = +  

Nonetheless, the federated algorithms faced limitations due to the restricted number of uploads, potentially creat- ing 
an unfair basis for comparison. After 200 global updates, FedAvg, APPLE, and FedProto demonstrated minimal 
improvement, leaving uncertainty about how much FedBABU could progress with greater communication. To address 
this, an experiment was conducted, granting FedBABU a larger communication budget. It was discovered that when 
given 1.5 times more uploads, FedBABU reached a performance level practically on par with APPLE and FedProto, 
surpassing FedAvg, as illustrated in Fig 7. The overall results of the tests are visualized in Fig. 3-6 in brief. 

 

Figure 3 FedAvg test accuracy, train loss with respect to communication round 
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Figure 4 APPLE test accuracy and train loss with respect to communication round 

 

Figure 5 FedBABU test accuracy and train loss with respect to communication round 
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Figure 6 FedProto test accuracy and train loss with respect to communication round 

 

Figure 7 FedBABU test accuracy, train loss with respect to Communication round on extended upload 

In this research, the study assessed and contrasted the performance of the federated learning algorithms FedAvg, 
APPLE, FedBABU, and FedProto using the Fashion MNIST dataset. In the experiments conducted with a multi-layer 
perceptron model, it was observed that APPLE and FedProto exhibited significantly superior performance on Fashion 
MNIST. Table 3 provides a summary of the comparison of these four personalized federated learning algorithms as part 
of the study. 

5. Conclusion 

This study assessed four Federated Learning algorithms for image classification and found that FedProto and APPLE 
performed nearly equally well, outperforming the FedBABU and FedAvg algorithms. Initially, the experi- ments used 
balanced data distributions to provide equal data for all clients, which is a useful starting point. However, this approach 
may not fully capture the complexity of the diverse federal environment. Consequently, extending our investigation to 
evaluate performance in scenarios where client data is unevenly distributed would be a logical pro- gression of our 
research. By investigating different levels of data imbalance, we can gain a deeper understanding of how heterogeneity 
affects the efficiency and resilience of federated learning algorithms. The results of this study have important 
implications for image classification tasks with heterogeneous data, such as in medical, military, or other applications 
where privacy is a critical concern. 
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