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Abstract 

Research objective: The main objective of this article is to report the results obtained from the use of new microbial 
strains on vegetable plants. In particular, the article will deal with two important topics: i) the study of the effect of 
microorganisms on the biomass of vegetable plants; ii) the possible control of mortality due to diseases such as powdery 
mildew and Cladosporiosis. The information reported in this research work can support the design of cropping systems 
in which agricultural sustainability is fundamental due to the presence of microorganisms with biostimulating activity 
and as a possible alternative to synthetic plant protection products. 

Materials and Methods: The plants were grown in pots under controlled conditions; 30 seedlings per thesis, divided 
into 3 replications of 10 plants each, were planted in early February 2024. The plants used in the trial were Cucurbita 
pepo L.. The six experimental groups in cultivation were: i) group without microorganisms, irrigated with water and 
previously fertilised substrate; ii) group with Paecilomyces lilacinus, irrigated with water and previously fertilised 
substrate, (4.5 x 106 spores/ml), 5ml of product sprayed per kg of substrate; iii) group with Azospirillum sp., irrigated 
with water and previously fertilised substrate, (4 x 108 spores/g), 1g of mixed product per kg of substrate; iv) group 
with Glomus sp., irrigated with water and previously fertilised substrate, (3 x 109 spores/g), 1g of mixed product per kg 
of substrate; v) group with Trichoderma viride, irrigated with water and previously fertilised substrate, (3.6 x 108 
spores/ml), 5ml of product sprayed per kg of substrate; vi) group with mix Bacillus subtilis, Pseudomonas sp. and 
Trichoderma viride, irrigated with water and previously fertilised substrate, (2.3 x 108 spores/ml) 5 ml of product 
sprayed per kg of substrate. On 5 June 2024, plant height, number of leaves, total leaf area per plant (mm2), primary 
root length (mm), biomass of the aerial and root system, number and weight of fruits, flowers number and the number 
of plants dead from powdery mildew and cladosporiosis attacks were recorded. 

Results and Discussion: The experiment showed that the use of of different types of probiotic and plant defence 
microorganisms can indeed significantly improve the vegetative and root growth of Cucurbita pepo L.. All treatments 
showed a significant improvement over the untreated control for the agronomic parameters analysed. The Bacillus 
subtilis, Pseudomonas sp. and Trichoderma viride treatment with a mix of microorganisms was significantly the best in 
terms of increasing vegetative and root biomass. Improvements were also found in plant height, number of leaves, leaf 
area and root length. In addition, significant effects were found on the number of flowers and fruits as well as fruit 
weight. The trial also revealed the significant effect of the products on the control of powdery mildew and Cladosporiosis, 
in which case the product PL (Paecilomyces lilacinus) was the best on the two diseases. 

Conclusions: Experiments have shown that the use of microorganisms can significantly improve the growth, vegetative 
and root biomass of Cucurbita pepo L.. The treatment also offers increased resistance to mortality that can occur in 
nursery cultivation. A variety of horticultural and ornamental species have already been tested with microorganisms in 
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previous trials, which highlight other interesting and innovative aspects of the use of microorganisms. Due to the 
importance of using microbial inoculums in plants, the new agricultural experiments are extremely important as they 
may allow the development of new products for organic and sustainable farming systems and lead to better results.  
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1. Introduction 

Increasing world population, rapid industrialization, and urbanization, as well as anthropogenic activities have 
impacted the terrestrial ecosystem and the hidden players that regulate it [1]. The United Nations reports that the global 
population is expected to reach approximately 9 billion by 2050. There will be 10 billion people by the year 2050, 
putting greater pressure on land to feed such huge populations [1,2]. Deforestation will also lead to several human 
interventions in ecosystem functioning as a result of increased world population, affecting soil water holding capacity 
and enhancing soil erosion. As a result, the world needs another green revolution, at the expense of extensive chemical 
fertilizer and pesticide use, which will negatively influence soil health and microbiome diversity [3]. In order to address 
these issues, multiple strategies are needed, such as using microbes that promote plant growth as biostimulants. As 
inoculum, microbial consortia or single microorganisms have previously been studied [4]. Although microbial 
inoculants can be successfully transferred from the lab to the field, this is still a challenging process. A variety of crops, 
varying environmental conditions between fields, and the exponential increase in microbial isolates are the primary 
reasons for this. The use of biostimulants requires a comprehensive strategy that includes “diagnosis” of the crop's 
genotype and its field environment (e.g., soil), good agricultural practices, screening for inoculations from available 
culture collections, promoting microbiome research, and finally integrating all of the above into large-scale industrial 
production [5]. Since the 1980s, many researchers have studied microbial inoculants, but with only patchy success. By 
identifying candidates or methods for inoculation that are more suitable for a given environment, it may be possible to 
identify stressors, genotype, and environmental variables that affect plant microbiota [6]. The plant microbiome is 
composed of a variety of organisms, including fungi, archaea, and bacteria [7,8]. Plant microbiomes are vast 
communities of microorganisms that live within and on plants. The presence of these microorganisms is crucial for the 
growth and health of plants [9]. Recent years have seen a rise in interest in investigating plant microbiomes to better 
understand the interactions between plants and microbes.  

1.1. Plant microbiome 

"Plant Microbiome" is a relatively new area of research that focuses on the many communities of microorganisms that 
live inside and outside of plant tissues and facilitate their growth and health. Bacteria, fungi, viruses, and others interact 
intricately with plants [10]. Plant microbiomes consist of phyllosphere, endosphere, spermosphere, rhizosphere, and 
soil-associated non-rhizospheric microbiomes [11]. Plant microbiomes play a crucial role in increasing plant growth 
and resistance to disease, nutrient deficiency, and drought. In mutualistic relationships between plants and soil 
microbes, nutrients are provided and deadly infections are defended [12,13]. Both agricultural and natural ecosystems 
benefit from microbial populations that are associated with plants and soil. In addition to helping plants uptake 
additional nutrients from the soil, beneficial soil bacteria provide resistance to biotic and abiotic stresses [14]. In 
exchange, microorganisms exploit plant waste byproducts for energy. Microbiomes also play an important role in 
defending plants against pathogens by engaging in niche competition, producing antibiotics, providing nutrients, 
releasing secondary metabolites (SMs), and activating the plant's defense system against initial pathogen attacks 
through systemic resistance [15]. Microbes also help plants by producing enzymes that reduce pathogens' harmful 
effects by producing antimicrobials such as hydrogen cyanide (HCN) and siderophore [16-18]. However, selective 
breeding, monoculture, and the use of agrochemicals in agroecosystems have harmed the relationship between 
beneficial microbiota and plants. Natural alternatives to synthetic fertilizers and chemical pesticides can be used as 
microbial inoculants, which have several benefits over conventional inputs. As an example, microbial inoculants can 
improve soil fertility and health while also being economical and environmentally friendly. Inoculants that are 
specifically adapted to different crop types and growing environments can also improve their effectiveness in promoting 
plant development and disease resistance [19,20]. In spite of the advantages of using the plant microbiome in 
agriculture, several issues remain. It is difficult to pinpoint the microorganisms that are most beneficial for crops and 
growth environments due to the complexity of the plant microbiome. The efficacy of microbial inoculants can also be 
significantly influenced by soil characteristics and crop management techniques, which can differ greatly across a wide 
range of agricultural systems. 
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1.2. A plant microbiome's role in regulating abiotic and biotic stress 

Worldwide, abiotic stress, such as drought, salinity, and extremely high or low temperatures, is a significant problem 
for crop production. Plant microbiomes, which are comprised of numerous microbes found in plant tissues and 
rhizospheres, have become an important factor in regulating plant responses to abiotic stress. Among the most 
significant abiotic factors affecting crop yields is drought stress. To increase plant water efficiency, microbes in the plant 
microbiome control stomatal conductance, synthesize osmoprotectants, and promote root growth. Plants can be 
improved in their ability to withstand drought by certain Rhizobacteria and fungal endophytes that produce 
phytohormones and stimulate the expression of genes related to stress [21,22]. In addition to soil salt levels, another 
significant abiotic stress that limits crop productivity is salinity stress. Plant microbes can reduce salinity stress by 
decreasing the uptake of noxious ions and improving food availability. Rhizobacteria such as Pseudomonas spp., 
Serendipita indica, Bacillus spp., and arbuscular mycorrhizal fungi can enhance the availability of nutrients like nitrogen 
and phosphorus, which are crucial for plant growth, but decrease sodium ion accumulation in plants [23]. It is also 
possible for crops to be affected by extreme temperature stress, which includes both high and low temperatures. Plant 
microbes can help plants cope with the stresses caused by extreme temperatures by controlling plant physiology and 
metabolism. Some fungal endophytes and Enterobacter sp. SA187, for example, can help plants resist high temperatures 
by boosting antioxidant activity and shielding plant tissues from heat damage [24]. The ability of plants to cope with 
abiotic stress can be enhanced by the application of microbial inoculants. By enhancing plant-microbe interactions, 
regulating plant hormone levels, and improving nutrient uptake, microbial inoculants can improve plant growth and 
stress tolerance. Plant growth and drought tolerance can be enhanced by inoculating crops with certain rhizobacteria 
[25], for example. As a result, it can be concluded that plant microbiomes play a crucial role in determining how plants 
react to abiotic stress, including drought, salinity, and high temperatures. By advancing research and practices on plant 
microbiomes, agriculture can be more sustainable and the harmful environmental effects of existing agricultural 
practices can be reduced. 

A significant global concern for crop productivity is biotic stress caused by pests and pathogens. Plant microbiomes are 
a collection of microbes living in plant tissues and rhizospheres, which regulate plant responses to biotic stresses. Insect 
pests can severely affect crop yield due to biotic stress. The microbes of plants can assist in controlling insect pests by 
generating insecticidal substances (such as Bacillus thuringiensis' Bt-toxin) or by improving plant defenses. As an 
example, some bacteria and fungi create poisonous substances for insects, while others assist plants in preparing insect 
defenses [26]. Fungal infections, such as Fusarium and Phytophthora species, can result in significant crop losses. 
Microbes in plant microbiomes can help manage fungal infections by producing antifungal chemicals, promoting plant 
resistance, or competing for nutrients and space. Some bacteria (Bacillus, Pseudomonas, Klebsiella, etc.) compete with 
certain fungi for resources, and certain bacteria and fungi may produce antifungal substances that prevent the growth 
of disease-causing fungi [27]. ,The agricultural industry can benefit from biocontrol agents, microorganisms that can 
control pests and infections. Biocontrol agents improve plant growth and control biotic stress by enhancing plant uptake 
of nutrients, controlling plant hormone levels, and improving plant-microbe interactions. Tomato, cucumber, and 
pepper crops can be controlled with biocontrol agents such as fungi and bacteria [28]. 

 

Figure 1 Details of the plants used in the trial 

The main objective of this article is to report the results obtained from the use of new microbial strains on vegetable 
plants. 
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In particular, the article will deal with two important topics: i) the study of the effect of microorganisms on the biomass 
of vegetable plants; ii) the possible control of mortality due to diseases such as powdery mildew and Cladosporiosis. The 
information reported in this research work can support the design of cropping systems in which agricultural 
sustainability is fundamental due to the presence of microorganisms with biostimulating activity and as a possible 
alternative to synthetic plant protection products. 

2. Materials and methods 

The plants were grown in pots under controlled conditions; 30 seedlings per thesis, divided into 3 replications of 10 
plants each, were planted in early February 2024. The plants used in the trial were Cucurbita pepo L.. All plants were 
fertilised with a slow-release fertiliser (2 kg m-3 of Osmocote Pro® for 6 months) introduced into the growing medium 
at the time of transplanting. 

The six experimental groups in cultivation were: 

 Group without microorganisms (CTRL): (peat 70% + pumice 20%), irrigated with water and previously 
fertilised substrate;  

 Group with Paecilomyces lilacinus (PL): (peat 70% + pumice 20%), irrigated with water and previously 
fertilised substrate, (4.5 x 106 spores/ml), 5ml of product sprayed per kg of substrate; 

 Group with Azospirillum sp. (AZ): (peat 70% + pumice 20%), irrigated with water and previously fertilised 
substrate, (4 x 108 spores/g), 1g of mixed product per kg of substrate; 

 Group with Glomus sp. (GS): (peat 70% + pumice 20%), irrigated with water and previously fertilised 
substrate, (3 x 109 spores/g), 1g of mixed product per kg of substrate; 

 Group with Trichoderma viride (TV): (peat 70% + pumice 20%), irrigated with water and previously 
fertilised substrate, (3.6 x 108 spores/ml), 5ml of product sprayed per kg of substrate; 

 Group with mix Bacillus subtilis, Pseudomonas sp. and Trichoderma viride (BPT): (peat 70% + pumice 
20%), irrigated with water and previously fertilised substrate, (2.3 x 108 spores/ml) 5 ml of product 
sprayed per kg of substrate. 

The plants were watered once a day and cultivated for 5 months. The plants were drip-irrigated. Irrigation was activated 
by a timer whose schedule was adjusted weekly according to weather conditions and leaching fraction. On 5 June 2024, 
plant height, number of leaves, total leaf area per plant (mm2), primary root length (mm), biomass of the aerial and root 
system, number and weight of fruits, flowers number and the number of plants dead from powdery mildew and 
cladosporiosis attacks were recorded. 

2.1. Statistics 

The experiment was carried out in a randomized complete block design. Collected data were analysed by one-way 
ANOVA, using GLM univariate procedure, to assess significant (P ≤ 0.05, 0.01 and 0.001) differences among treatments. 
Mean values were then separated by LSD multiple-range test (P = 0.05). Statistics and graphics were supported by the 
programs Costat (version 6.451) and Excel (Office 2010).  

3. Results and discussion 

The experiment showed that the use of of different types of probiotic and plant defence microorganisms can indeed 
significantly improve the vegetative and root growth of Cucurbita pepo L. (Table 1). All treatments showed a significant 
improvement over the untreated control for the agronomic parameters analysed. The BPT treatment with a mix of 
microorganisms was significantly the best in terms of increasing vegetative and root biomass. Improvements were also 
found in plant height, number of leaves, leaf area and root length (Table 1 and Figures 4-7). In addition, significant 
effects were found on the number of flowers and fruits as well as fruit weight (Figure 2). The trial also revealed the 
significant effect of the products on the control of powdery mildew and Cladosporiosis, in which case the product PL 
(Paecilomyces lilacinus) was the best on the two diseases (Figure 3). 

Active ingredients, such as live microorganism spores, are what characterize this type of product. We can highlight, for 
example, bacteria such as Bacillus, Azospirillum, Pseudomonas, and Rhizobium, as well as fungi such as Beauveria, 
Gliocladium, Pochonia, Metarhizium, and Trichoderma [29-35], as well as Actinomycetes such as Streptomyces [36,37]. 
As soil microorganisms occupy a large amount of the rhizosphere, they are close to plants, and they are also capable of 
forming biofilms that protect the roots against pathogens [38-42]. The beneficial microorganisms are supported by the 
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host plant, taking advantage of the carbon-rich compounds contained in the root exudates, including sugars, amino 
acids, flavonoids, proteins and fatty acids that are crucial for their nutrition [43-45].  

Table 1 Evaluation of new microbic strains on agronomic characters on plants of Cucurbita pepo L 

 

 

 

 

 

 

 

 

 

 

 

 

 
One-way ANOVA; n.s. – non significant; *,**,*** – significant at P ≤ 0.05, 0.01 and 0.001, respectively; different letters for the same element indicate 

significant differences according to Tukey’s (HSD) multiple-range test (P = 0.05).; Parameters: PH = plant height (cm); LN = leaves number (cm); 
TLA = total leaves area (mm2); VW = vegetative weight (g); RW = roots weight (g); RL = roots length (cm). Treatments: CTRL=control; PL= 

Paecilomyces lilacinus; AZ= Azospirillum sp.; GS= Glomus sp.; TV= Trichoderma viride; BPT= Bacillus subtilis, Pseudomonas sp. and Trichoderma viride 

 

Figure 2 Effect of new microbic strains on flowers and fruits number and fruits weight in Cucurbita pepo L. Legend: 
CTRL=control; PL= Paecilomyces lilacinus; AZ= Azospirillum sp.; GS= Glomus sp.; TV= Trichoderma viride; BPT= Bacillus 

subtilis, Pseudomonas sp. and Trichoderma viride 

 

Cucurbita pepo L. PH (cm) LN (n°) TLA (mm2) VW (g) RW (g) RL (cm) 

CTRL 30.71 f 7.80 d 112.80 e 45.57 d 33.24 d 4.31 e 

PL 32.55 e 8.80 c 115.45 d 46.39 c 36.50 c 5.34 d 

AZ 32.93 d 9.20 c 116.61 c 46.58 bc 36.62 c 5.65 c 

GS 33.34 c 13.00 b 117.63 b 46.54 c 37.26 b 5.74 c 

TV 33.88 b 13.40 b 118.14 b 46.89 b 37.67 b 5.90 b 

BPT 36.33 a 17.00 a 121.57 a 49.54 a 39.67 a 6.42 a 

ANOVA *** *** *** *** *** *** 
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Figure 3 Effect of new microbic strains on the control of Powdery mildew and Cladosporiosis in Cucurbita pepo L. 
Legend: CTRL=control; PL= Paecilomyces lilacinus; AZ= Azospirillum sp.; GS= Glomus sp.; TV= Trichoderma viride; BPT= 

Bacillus subtilis, Pseudomonas sp. and Trichoderma viride 

 

 

 

Figure 4 Effect of microbic strains on vegetative biomass of Cucurbita pepo L. compared with fertilised control. 
Legend: BPT: Bacillus subtilis, Pseudomonas sp. and Trichoderma viride; GS: Glomus sp.; TV: Trichoderma viride; CTRL: 

control 

 

Figure 5 Effect of microbic strains BPT (Bacillus subtilis, Pseudomonas sp. and Trichoderma viride) on radical biomass 
of Cucurbita pepo L. compared with fertilised control (CTRL) 
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Additionally, exudates may inhibit the growth of some species while favouring others, suggesting that the rhizosphere 
is highly selective for microbes. A plant's role in affecting the microbial composition of the native and inoculated 
rhizosphere community is therefore crucial [46]. A number of studies have shown that signal molecules emitted by 
plants can influence the microbial community in the rhizosphere based on the plant's growth phase [47-50]. As well, it 
has been observed that plant signal molecules can have an impact on the microbial community in the rhizosphere 
depending on the growth phase of the plant [51-53]. A microorganism-based inoculum can also increase photosynthetic 
activity, salinity tolerance, iron bioavailability, and reduce disease [54-57], as well as increase photosynthetic activity, 
salinity tolerance, and iron bioavailability. As confirmed in this trial, the use of microorganisms resulted in improved 
plant growth and quality and reduced plant mortality. In other tomato trials in the Naples area, Glomus sp. 
microorganisms were also used. Based on dry residue, soluble solids, mineral element concentration, lycopene, 
polyphenols, and ascorbic acid, there was a 49% increase in root colonization and fruit yield and quality [58]. The 
application of microgreens to shallots (Allium cepa L. Aggregatum) increased bulb production and quality, as well as 
mineral element concentrations, ascorbic acid concentrations, and antioxidant activity [59,60]. In this research work, 
the application of development-promoting and plant-protecting microorganisms led to a significant improvement in 
plant growth and increased protection against pathogens such as powdery mildew and cladosporiosis, confirming 
results obtained in other research by other authors. 

 

Figure 6 Effect of microbic strains on flowers size of Cucurbita pepo L. compared with fertilised control (CTRL) 
Legend: BPT: Bacillus subtilis, Pseudomonas sp. and Trichoderma viride; GS: Glomus sp.; AZ: Azospirillum sp.; CTRL: 

control 

 

 

Figure 7 Effect of microbic strains on flowers size of Cucurbita pepo L. compared with fertilised control (CTRL) 
Legend: BPT: Bacillus subtilis, Pseudomonas sp. and Trichoderma viride; CTRL: control  

4. Conclusion 

Experiments have shown that the use of microorganisms can significantly improve the growth, vegetative and root 
biomass of Cucurbita pepo L.. The treatment also offers increased resistance to mortality that can occur in nursery 
cultivation. A variety of horticultural and ornamental species have already been tested with microorganisms in previous 
trials, which highlight other interesting and innovative aspects of the use of microorganisms. Due to the importance of 



GSC Advanced Research and Reviews, 2024, 20(01), 338–348 

345 

using microbial inoculums in plants, the new agricultural experiments are extremely important as they may allow the 
development of new products for organic and sustainable farming systems and lead to better results.  
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