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Abstract 

Federated Learning (FL) has emerged as a groundbreaking paradigm enabling collaborative machine learning across 
distributed nodes without centralizing data, thus addressing critical concerns in security and privacy. This survey 
explores the application of FL for secure and privacy-preserving data analytics in heterogeneous networks, where 
diverse devices, data distributions, and network conditions present unique challenges. This paper provides a 
comprehensive review of recent advancements in FL, focusing on its efficacy in safeguarding sensitive information while 
enabling effective analytics across varied domains such as healthcare, finance, and IoT systems. The paper delves into 
key methodologies for achieving privacy preservation, including differential privacy, secure multi-party computation, 
and homomorphic encryption, while analyzing their performance in dynamic and resource-constrained environments. 
Additionally, this paper examines strategies for managing heterogeneity, including personalized FL, model aggregation 
techniques, and adaptive optimization algorithms. Challenges such as scalability, communication efficiency, and 
adversarial robustness are discussed alongside potential solutions and future research directions. This survey aims to 
provide researchers and practitioners with an in-depth understanding of the state-of-the-art in FL for secure and 
privacy-preserving data analytics, fostering innovation and addressing emerging needs in increasingly complex 
network ecosystems.  
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1. Introduction

The rapid proliferation of data-generating devices such as smartphones, sensors, and edge computing systems has 
ushered in a new era of data-driven decision-making [1], [2]. This unprecedented growth has led to significant 
advancements in machine learning and data analytics, enabling transformative applications across diverse domains 
such as healthcare, finance, and smart cities. However, as data continues to expand in volume, variety, and velocity, so 
do the challenges associated with ensuring its privacy and security [3]-[5]. Traditional centralized machine learning 
approaches, which require aggregating data at a central server, have become increasingly impractical due to rising 
concerns over data breaches [6], misuse, and stringent privacy regulations such as the General Data Protection 
Regulation (GDPR). Federated Learning (FL) has emerged as a revolutionary approach to overcome these challenges by 
facilitating collaborative model training across distributed devices while retaining data locally, ensuring privacy and 
security. 

Federated learning, first introduced by Google in 2016, shifts the paradigm from centralized to decentralized model 
training [7], [8]. In FL, instead of transferring raw data to a central server, individual devices compute model updates 
based on their local data and share these updates with a central aggregator, as shown in Figure 1. The aggregator then 
integrates the updates to improve the global model iteratively [9]. This distributed approach addresses critical privacy 
concerns by ensuring that sensitive information [10] never leaves the local devices. FL’s decentralized nature also aligns 
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well with the requirements of modern applications that involve sensitive data, making it particularly suitable for 
domains like personalized healthcare, financial fraud detection, and autonomous systems [11]. [12]. 

Despite its promise, the implementation of federated learning in real-world environments is fraught with challenges, 
particularly in heterogeneous networks. Such networks are characterized by a wide variety of devices with differing 
computational capabilities, network conditions, and data distributions [13], [14]. For instance, devices in an Internet of 
Things (IoT) environment may have highly imbalanced datasets, limited computational resources [15], and intermittent 
connectivity. These factors contribute to significant challenges, including inefficient communication, biased model 
updates, and slow convergence rates. Addressing these issues requires advanced algorithms and adaptive strategies to 
ensure robust and efficient FL deployment in diverse environments. 

 

Figure 1 Federated learning 

In addition to system heterogeneity, federated learning introduces unique security and privacy vulnerabilities. While 
the decentralized nature of FL inherently reduces the risks associated with centralizing sensitive data [16], it also 
creates new attack vectors. For example, adversaries may attempt to infer sensitive information from model updates 
through data reconstruction or membership inference attacks [17]-[19]. Moreover, malicious nodes can poison the 
global model by submitting incorrect or adversarial updates, undermining the reliability of the learning process. To 
address these risks, researchers have proposed various techniques such as differential privacy, secure multi-party 
computation, homomorphic encryption, and robust aggregation methods. These mechanisms aim to enhance the 
security and privacy [20] of FL systems while maintaining model utility. 

Another critical challenge in federated learning arises from the heterogeneity of data across devices. Unlike traditional 
machine learning settings where data is assumed to be independent and identically distributed (IID), the data generated 
by devices in FL is often non-IID [21], [22]. This non-IID nature leads to skewed model updates, causing slower 
convergence and reduced performance of the global model [23], [24]. Additionally, the variation in device capabilities, 
ranging from high-performance edge servers to resource-constrained IoT sensors [25], exacerbates the problem, 
requiring efficient task scheduling and resource allocation strategies. 

This survey paper aims to provide a comprehensive review of federated learning for secure and privacy-preserving data 
analytics in heterogeneous networks. It examines the latest advancements in privacy-preserving techniques, including 
differential privacy, encryption methods, and secure aggregation protocols. Furthermore, it explores strategies to 
address the challenges posed by heterogeneity, such as algorithmic adaptations for non-IID data, resource-efficient 
training methods, and robust communication protocols. The survey also highlights practical applications of Federated 
Learning across various domains, emphasizing the benefits and limitations of FL in real-world scenarios. Finally, the 
paper identifies open challenges and future research directions, providing a roadmap for advancing Federated Learning 
in increasingly complex and dynamic network environments. In a nutshell, this survey seeks to bridge the gap between 
theoretical advancements and practical implementations of Federated Learning. It aims to serve as a valuable resource 
for researchers and practitioners seeking to understand the state-of-the-art in FL and its potential to revolutionize 
secure and privacy-preserving data analytics in heterogeneous networks. 
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2. Basics of Federated learning  

Federated learning is a decentralized machine learning paradigm that enables multiple participants (clients) to 
collaboratively train a global model while keeping their data localized on their devices [26], [27]. The basic architecture 
of federated learning revolves around a central server (often called the aggregator) and a set of distributed clients 
(devices such as smartphones, IoT devices, or computers). The goal is for the clients to collaboratively train a machine 
learning model without sharing their raw data with each other or with the central server [28], [29]. Instead, only model 
updates or gradients are exchanged, ensuring data privacy and security [30]. The following are the descriptions of the 
basic elements. 

2.1. Central Server 

The central server, also referred to as the aggregator, is responsible for coordinating the federated learning process 
[31], as depicted in Figure 2. It does not have access to the raw data but instead receives model updates (e.g., gradients 
or weights) from the clients. The key functions of the central server include: 

• Model initialization: The central server initializes the global model, which will be trained collaboratively by the 
clients [32], [33]. This model typically consists of weights and biases, and it may start with random initialization 
or with pretrained weights from a previous model. 

 

Figure 2 Federated learner elements 

• Model aggregation: Once the clients perform local training, the server aggregates the model updates sent by the 
clients [34]. The aggregation process typically involves computing a weighted average of the model parameters 
or gradients from the participating clients [35]. This step is essential to combine the knowledge learned from 
the local datasets into a global model. 

• Model distribution: After aggregating the model updates, the server sends the updated global model back to the 
clients for the next round of training. 

2.2. Clients 

The clients are the devices or entities that hold the local data and perform the actual model training. As shown in Figure 
2, these devices could include smartphones, computers, IoT devices [36], or edge nodes, each with its own dataset. The 
key components and responsibilities of the clients include: 

• Local model training: Each client performs local training on its own data [37]. Since data on the client devices 
is not shared with other clients or the central server, the local training is done independently [38]. The client 
computes updates (such as gradients) based on its local data and the model parameters it received from the 
server. 
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• Model updates: After local training, the client computes the model updates (gradients or weights) and sends 
them to the central server for aggregation [39], [40]. Importantly, clients only send model updates and not raw 
data, which preserves the privacy [41] of the data. 

• Participation control: In some cases, not all clients participate in every round of training. Some clients may be 
excluded due to network connectivity issues, resource limitations, or voluntary opt-out [42], [43]. The central 
server can manage the number of participating clients to optimize the federated learning process. 

2.3. Federated learning workflow 

The federated learning process proceeds in multiple rounds, where each round consists of the following steps, which 
are summarized in Figure 3: 

• Initialization: The central server initializes the global model and distributes it to participating clients [44]. 
• Local training: Clients receive the global model and train it locally on their own data [45]. This training typically 

involves multiple epochs or iterations of gradient descent [46] to adjust the model's parameters. 
• Model update transmission: Model updates are transmitted by aggregating locally trained model parameters 

from multiple devices, rather than sharing raw data, to ensure privacy [47], [48]. These updates are sent to a 
central server, which combines them to improve the global model and distributes it back to the devices for 
further training.. 

 

Figure 3 Federated learning workflow 

• Aggregation: The server collects the model updates from all participating clients and aggregates them [49]. This 
aggregation usually involves averaging the weights or gradients in a manner that reflects the contribution of 
each client (e.g., weighted by the number of data points on each client). 

• Global model update: Once the server aggregates the updates, it updates the global model [50]. This new global 
model is then sent back to the clients for the next round of local training. 

Essentially, the basic architecture of federated learning is built around a central server and distributed clients, where 
local model training occurs on client devices, and model updates are aggregated at the server to improve the global 
model. 

3. Federated learning and data analytics  

Federated learning, as a decentralized approach to machine learning that has gained significant attention in data 
analytics due to its ability to train models collaboratively without requiring raw data to leave local devices [51]. This 
paradigm addresses critical privacy, security, and compliance challenges associated with traditional centralized 
learning [52], where data is aggregated at a central server. As shown in Figure 4, in FL, data remains on individual client 
devices, such as smartphones, IoT sensors, or edge systems, while model updates—rather than raw data—are 
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exchanged with a central server [53]-[56]. This framework allows for efficient utilization of distributed data sources 
while minimizing privacy risks and ensuring compliance with data protection regulations like GDPR and HIPAA. 

The core workflow of federated learning begins with a global model initialized by a central server and shared with 
participating clients. Each client uses its local data to train the model [57] independently, computing updates such as 
gradients or model weights. These updates are then sent back to the central server, where they are aggregated, typically 
using techniques like Federated Averaging (FedAvg). The aggregated updates are used to refine the global model, which 
is redistributed to the clients [58]-[61]. This iterative process continues until the global model achieves satisfactory 
performance or convergence. By focusing on local computation and limited data transfer, FL reduces communication 
overhead [62] and enhances scalability, making it ideal for large-scale systems. 

 

Figure 4 Federated learning – based data analytics 

According to [63], federated learning offers numerous advantages for data analytics. Chief among these is privacy 
preservation, as sensitive data remains localized on devices, significantly reducing the risk of breaches or misuse [64]. 
FL also provides scalability by leveraging the computational power of distributed devices, enabling analytics across 
millions of clients. Additionally, FL supports personalization by allowing clients to tailor models to their unique data 
distributions, which is particularly valuable in domains such as healthcare and personalized services [65], [66]. Despite 
these benefits, implementing FL presents challenges, particularly in heterogeneous networks where devices may vary 
widely in computational power [67], network connectivity, and data distributions. Non-IID (non-independent and 
identically distributed) data across clients can lead to biased model updates, slower convergence, and reduced model 
performance. 

Furthermore, FL introduces unique security risks. While decentralization mitigates data centralization risks, it also 
creates new vulnerabilities such as model poisoning [68], where malicious clients inject adversarial updates, and 
inference attacks [69], where attackers attempt to reconstruct sensitive information from model updates. To address 
these issues, researchers have developed techniques such as differential privacy, secure multi-party computation, and 
homomorphic encryption to enhance the security and privacy of FL systems [70], [71]. 

FL’s transformative potential is evident in its applications across various domains. In healthcare, for example, FL enables 
hospitals to collaborate on predictive models without compromising patient data privacy. In IoT ecosystems, it 
facilitates real-time analytics while preserving the confidentiality of sensor data [72]. In finance, FL is used to develop 
fraud detection and risk assessment models while adhering to strict data protection laws [73]. Through the addressing 
of challenges such as data heterogeneity, system variability, and security threats, FL continues to evolve as a key enabler 
of secure, privacy-preserving, and scalable data analytics in distributed environments [74]. 

4. Security issues in heterogeneous networks 

Heterogeneous networks (HetNets) refer to communication systems that integrate different types of network 
technologies, infrastructure, and devices, often with varying capabilities and characteristics [75]. As depicted in Figure 
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5, these networks typically combine cellular networks (such as 4G, 5G), Wi-Fi, IoT devices, and other wireless 
technologies, creating a diverse and complex environment for data transmission [76], [77]. HetNets are designed to 
improve coverage, capacity, and overall network performance by leveraging the strengths of different technologies, 
such as small cells, macro cells, and Wi-Fi offloading [79], [80]. Due to the varying scales, resource limitations, and 
diverse use cases of the different network components, HetNets face unique challenges in terms of coordination, 
management, and ensuring efficient, secure, and seamless connectivity across the entire network.  

 

Figure 5 Heterogeneous network 

Heterogeneous networks are characterized by a diverse set of devices, varying data distributions, and differing network 
conditions [81]. While these networks enable scalable and distributed data processing, they also introduce a range of 
security vulnerabilities. The complexity and variability inherent in HetNets create fertile ground for potential attacks, 
misconfigurations, and inefficiencies that compromise data integrity, confidentiality, and availability [82], [83]. This 
section extensively explores the key security issues in heterogeneous networks. 

4.1. Data privacy breaches 

In heterogeneous networks, data is often generated and stored on devices with varying levels of security capabilities 
[84]. Devices with lower security standards are more vulnerable to unauthorized access, leading to potential data 
breaches. For example, an IoT sensor with minimal encryption protocols can serve as an entry point for attackers to 
gain access to sensitive information in a connected system [85]-[87]. Additionally, the distributed nature of HetNets 
makes it challenging to implement consistent privacy-preserving mechanisms, as different devices may have 
incompatible security frameworks. 

4.2. Adversarial attacks 

Heterogeneous networks are particularly susceptible to adversarial attacks, where malicious entities aim to disrupt the 
network’s operation or compromise its security. Key adversarial threats include: 

Eavesdropping: Eavesdropping attacks occur when an unauthorized party intercepts and listens in on communications 
between two parties, typically to gain access to sensitive information [88], as depicted in Figure 6. This type of attack 
takes place without the knowledge of the communicating parties and can target data transmitted over various 
communication channels, such as unencrypted emails, network traffic, or wireless signals [89], [90]. The attacker can 
steal confidential information, including passwords, personal details, financial data, or intellectual property. 
Eavesdropping attacks are especially prevalent in unsecured networks, like public Wi-Fi, where attackers can exploit 
weak or absent encryption protocols to capture data in transit [91]. Preventing eavesdropping requires robust 
encryption and secure communication protocols to protect data privacy and integrity [92]. Unsecured communication 
channels in HetNets can be exploited by attackers to intercept sensitive information during transmission. 
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Figure 6 Eavesdropping attack 

Man-in-the-Middle (MITM) attacks: Man-in-the-Middle (MitM) attacks are a type of cyberattack where an attacker 
intercepts and potentially alters the communication between two parties without their knowledge [93]. As 
demonstrated in Figure 7, the attacker secretly relays or modifies messages between the communicating entities, such 
as between a user and a website or between two devices in a network [94]. The attacker can eavesdrop on sensitive 
information, such as login credentials, financial data, or personal details, or inject malicious content to compromise the 
integrity of the communication [95]-[98]. MitM attacks are particularly dangerous in unsecured communication 
channels, such as public Wi-Fi networks, where encryption and authentication mechanisms [99] may be weak or absent. 
An attacker can intercept and alter communications between devices, compromising data integrity and authenticity. 

 

Figure 7 MITM attack 

4.3. Device compromise and botnet attacks 

Botnet attacks involve a network of compromised devices, often referred to as "bots" or "zombies," that are controlled 
by a central command-and-control server without the owners' knowledge [100], as depicted in Figure 8. These devices, 
which can include computers, IoT devices, and smartphones, are infected with malicious software, allowing the attacker 
to remotely control them [101], [102]. Once part of the botnet, the devices can be used to execute various types of 
malicious activities, such as launching Distributed Denial of Service (DDoS) attacks, stealing sensitive information, 
sending spam emails, or spreading malware to other systems [103]. Botnet attacks are particularly dangerous due to 
the scale and automation of the attack, as they can overwhelm targets, cause widespread damage, and operate under 
the radar for extended periods. Heterogeneous networks often consist of a mix of resource-constrained devices [104], 
such as IoT sensors, and high-performance devices, such as edge servers.  
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Figure 8 Botnet attack 

The former are often less secure and easier to compromise. Once an attacker gains control of such devices, they can 
form botnets to launch distributed denial-of-service attacks, overwhelming the network and degrading its performance 
[105]. Device compromise also allows attackers to introduce malicious code or unauthorized updates into the system, 
undermining the integrity of the network. 

4.4. Secure communication challenges 

Secure communication in heterogeneous networks poses significant challenges due to the diverse mix of devices, 
technologies, and protocols involved [106]-[108]. The disparity in computational power, resource availability, and 
security capabilities among devices—ranging from IoT sensors to high-performance servers—creates vulnerabilities 
that attackers can exploit. Additionally, the dynamic and decentralized nature of HetNets, with devices constantly 
joining and leaving, complicates the establishment and maintenance of secure communication channels. Ensuring 
encryption, authentication, and data integrity across various technologies like cellular, Wi-Fi, and IoT protocols is 
further hindered by interoperability issues and resource constraints on low-power devices [109]. Furthermore, HetNets 
are susceptible to advanced threats, including man-in-the-middle (MitM) attacks, eavesdropping, and key management 
failures [110]-[113]. Addressing these challenges requires adaptive security frameworks that integrate lightweight 
encryption, scalable authentication mechanisms, and robust key distribution systems tailored to the unique 
characteristics of HetNets. 

4.5. Insider threats 

Insider threats in heterogeneous networks involve malicious or negligent actions by individuals with authorized access 
to the network, such as employees, administrators, or trusted devices, which compromise the network's security [114], 
[115]. Given the diverse and interconnected nature of HetNets, insiders can exploit their access to sensitive data, 
infrastructure, or communication channels across various technologies, including cellular, Wi-Fi, and IoT networks. 
These threats are particularly dangerous because insiders often bypass traditional security measures, such as firewalls 
and intrusion detection systems, to cause data breaches, disrupt operations, or introduce malware [116], [117]. The 
complexity of HetNets amplifies the risk, as it can be difficult to monitor and manage access across multiple platforms 
and devices. In collaborative environments like enterprise HetNets, insider threats pose a significant risk. Employees or 
trusted entities with access to sensitive systems may intentionally or unintentionally compromise security. The 
heterogeneity of access controls and policies across devices and platforms further exacerbates the challenge of 
identifying and mitigating insider threats [118]. 

4.6. Key management and authentication issues 

Effective key management is critical for ensuring secure communication and data access in heterogeneous networks. 
However, the diversity of devices and protocols makes centralized key management infeasible. This leads to challenges 
such as: 

Key distribution: Key distribution refers to the process of securely sharing cryptographic keys among different network 
entities, such as base stations, devices, and users, to enable secure communication and data exchange [119], [120]. This 
process is depicted in Figure 9, where KDC represents the key distribution center. Given the diverse and often 
decentralized nature of HetNets, which integrate various technologies (e.g., cellular, Wi-Fi, IoT), key distribution must 
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ensure that each component can securely authenticate and encrypt communications across different network layers 
and devices [121].  

 

Figure 9 Key distribution 

This process typically involves public-key infrastructure (PKI), symmetric or asymmetric encryption techniques, and 
secure key exchange protocols to prevent unauthorized access, eavesdropping, or tampering with sensitive data [122], 
[123]. Effective key distribution in HetNets is crucial for maintaining the confidentiality, integrity, and authenticity of 
communications, especially in the face of potential security threats like MitM attacks or eavesdropping. 

Authentication: In heterogeneous networks, authentication is the process of verifying the identity of devices, users, or 
network components to ensure secure communication and prevent unauthorized access [124]-[126]. Figure 10 gives 
an illustration of the authentication process in a 6G hetnets In HetNets, where diverse technologies such as cellular 
networks, Wi-Fi, and IoT devices are interconnected, authentication mechanisms must accommodate the varied 
capabilities and security requirements of each component [127].  

 

Figure 10 Authentication in 6G Hetnet 

This involves using a combination of traditional techniques like username/password verification, as well as more 
advanced methods such as biometrics, certificates, token-based systems, and multi-factor authentication (MFA) [128], 
[129]. Secure authentication protocols are critical in HetNets to prevent identity spoofing, unauthorized access, and 
other security breaches, ensuring that only legitimate devices and users can participate in the network, thus maintaining 
data integrity, privacy, and overall network security [130], [131]. 

4.7. Non-uniform security policies 

Non-uniform security policies in heterogeneous networks refer to the inconsistent application of security measures 
across the diverse technologies, devices, and protocols that make up these networks. Since HetNets integrate 



GSC Advanced Research and Reviews, 2024, 21(02), 527–555 

536 

components like cellular networks, Wi-Fi, and IoT devices, each with distinct capabilities and requirements, enforcing 
uniform security standards becomes challenging [132], [133]. This disparity can create weak points in the network, as 
devices with lower security levels become entry points for attackers, compromising the entire system. For example, 
robust encryption might be used in cellular communication, while IoT devices in the same network rely on lightweight 
or outdated security measures due to resource constraints [134]- [136]. The lack of standardized policies can lead to 
vulnerabilities in authentication, data encryption, and access control. In a heterogeneous network, devices often belong 
to different administrative domains with varying security policies. This lack of uniformity creates gaps in the overall 
security framework. For instance, some devices may enforce strong encryption and multi-factor authentication [137], 
while others rely on basic security measures. Attackers can exploit these discrepancies to target the weakest links in 
the network. 

4.8. Scalability and resource constraints 

Scalability and resource constraints are significant challenges in heterogeneous networks due to the diverse range of 
devices and technologies with varying capabilities [138]-[140]. HetNets often integrate resource-constrained devices, 
such as IoT sensors and edge nodes, alongside more powerful infrastructure like cellular base stations and servers. 
These devices must communicate and collaborate efficiently despite differences in computational power, memory, and 
energy availability [141]. As HetNets grow in size and complexity, managing resources like bandwidth, processing 
power, and storage becomes increasingly difficult, leading to potential bottlenecks and degraded performance. The 
dynamic nature of HetNets, with devices frequently joining or leaving the network, further complicates scalability [142], 
[143]. Ensuring seamless operation and resource optimization requires efficient load-balancing algorithms, dynamic 
resource allocation techniques, and scalable security protocols tailored to the diverse and evolving requirements of 
HetNets. 

4.9. Malware and ransomware attacks 

Malware and ransomware attacks in heterogeneous networks involve malicious software that targets the diverse 
devices and systems connected across the network [144]. Malware, including viruses, worms, and Trojans, can infect 
IoT devices, smartphones, computers, or network infrastructure, often without detection, leading to system 
compromise, data theft, or disruption of services [145]. As illustrated in Figure 11, ransomware, a specific type of 
malware, encrypts a victim’s files or locks access to critical systems and demands a ransom for restoration. In HetNets, 
the challenge is compounded by the variety of devices, operating systems, and communication protocols [146], which 
may have different levels of security, making them vulnerable to attacks.  

 

Figure 11 Ransomware attack 

These threats can spread quickly across interconnected devices, leading to widespread disruption, financial loss, and 
loss of sensitive data. Effective prevention and mitigation strategies in HetNets include timely software updates, 
endpoint security, network monitoring, and user awareness to minimize the risk of malware and ransomware infections 
[147], [148]. As explained in [149], heterogeneous networks are prime targets for malware and ransomware attacks 
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due to their distributed and interconnected nature. Attackers can introduce malware into less secure devices, which can 
then propagate across the network. Ransomware attacks can lock down critical systems, demanding payment for 
restoring access 150], and may have a cascading effect in HetNets, affecting multiple devices and services. 

4.10. Lack of standardized security protocols 

The lack of standardized security protocols in heterogeneous networks is a critical challenge stemming from the diverse 
technologies, devices, and communication standards within these networks [151], [152]. HetNets combine elements 
such as cellular networks, Wi-Fi, and IoT devices, each with its own security requirements and limitations. Without 
standardized protocols, ensuring consistent and interoperable security measures across these varied components 
becomes difficult [153], leaving gaps that attackers can exploit. This inconsistency complicates key management, 
authentication, and data encryption [154], as devices with differing capabilities may not support advanced or uniform 
security practices. Moreover, the absence of standards hinders collaboration among network providers, device 
manufacturers, and stakeholders. Addressing this issue requires developing universal security frameworks that are 
adaptable to diverse technologies while ensuring comprehensive protection and seamless integration in the HetNet 
ecosystem. 

4.11. Physical security vulnerabilities 

Physical security vulnerabilities in heterogeneous networks arise from the diverse and widely distributed components, 
such as IoT devices, base stations, and edge servers, many of which operate in remote or unsecured locations [155], 
[156]. Unlike centralized systems, HetNets often deploy small cells, access points, and sensors in public or outdoor 
environments, making them susceptible to physical tampering [157], theft, or destruction. Attackers can exploit these 
vulnerabilities to gain unauthorized access, disrupt services, or compromise the network by introducing malicious 
hardware or software [158]. For instance, physically tampered IoT devices can act as entry points for cyberattacks, 
impacting the broader network. Ensuring physical security in HetNets requires robust measures, such as tamper-
resistant hardware, secure enclosures, regular maintenance checks, and the deployment of physical surveillance 
systems to protect critical infrastructure. 

Security issues in heterogeneous networks stem from their intrinsic diversity and interconnected nature, making them 
complex and challenging to secure [159]. Attackers exploit the vulnerabilities arising from resource constraints, non-
uniform policies, and outdated protocols to compromise data confidentiality, integrity, and availability. Mitigating these 
challenges requires a holistic approach that combines advanced security technologies [160], standardization efforts, 
and proactive policy enforcement. By addressing these issues, heterogeneous networks can achieve the resilience 
needed to support secure and robust data processing in increasingly interconnected environments. 

5. Federated learning for security enhancement in heterogeneous networks 

Federated learning is a decentralized approach to machine learning that enables multiple distributed devices (clients) 
to collaboratively train a global model without sharing their local data [161]. The rise of heterogeneous networks, 
characterized by a diverse set of devices, varying network conditions, and disparate data sources, has introduced 
complex challenges in both machine learning and security [162], [163]. FL presents an innovative way to address these 
challenges, not only enhancing privacy and efficiency but also strengthening security in such networks. By keeping 
sensitive data localized on devices, FL mitigates the risk of data breaches, while also enabling the development of robust 
models in environments where data is often sparse, non-IID (non-independent and identically distributed), and prone 
to security threats. 

The sub-sections below explore how federated learning can be leveraged for security enhancement in heterogeneous 
networks, focusing on privacy preservation, resilience against adversarial attacks, secure communication, and model 
integrity. 

5.1. Privacy preservation in heterogeneous networks 

In traditional centralized machine learning models, data must be aggregated on a central server to train a model [164]. 
This centralization creates significant privacy risks as the raw data is exposed to potential breaches, leading to data 
misuse. Federated learning addresses this issue by allowing data to remain on individual devices. Only model updates, 
not raw data, are shared with a central server or coordinator [165], [166]. This decentralized approach minimizes the 
exposure of sensitive data, making it ideal for applications in privacy-sensitive domains like healthcare, finance, and 
IoT. 
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• Differential privacy: One of the key techniques used to further enhance privacy [167] in FL is differential privacy 
(DP). DP ensures that the information shared from the local models does not allow the reconstruction of 
sensitive individual data. In FL, differential privacy can be applied to the gradients or updates sent from the 
clients to the server [168, [169]. This prevents an attacker from inferring details about the local data, even if 
they gain access to model parameters or gradients. Differential privacy is crucial for securing personal 
information in heterogeneous networks, where data sources are often diverse and untrusted. 

• Homomorphic encryption: Another technique used in FL to preserve privacy is homomorphic encryption [170], 
which allows computations to be performed on encrypted data without needing to decrypt it first. This ensures 
that even when malicious actors intercept the updates during transmission, the information remains 
confidential [171]. Homomorphic encryption, though computationally intensive, is gaining traction in FL 
systems, particularly in contexts requiring high privacy standards. 

By utilizing these privacy-preserving techniques [172], FL ensures that even in a heterogeneous network with different 
security levels across devices, sensitive information is protected. 

5.2. Resilience to adversarial attacks 

Adversarial attacks are a major security concern in federated learning, especially in heterogeneous networks. Malicious 
actors may manipulate the model updates sent from clients to the central server to poison the global model, degrade its 
performance, or inject incorrect information [173], [174]. These attacks can be especially damaging in heterogeneous 
networks, where devices differ in computational capabilities, data quality, and reliability. 

• Federated averaging and robust aggregation: To address the risks of adversarial poisoning, FL uses aggregation 
techniques like Federated Averaging (FedAvg), where the server averages the updates from clients to build a 
more accurate global model [175], [176]. However, when adversarial updates are present, simple averaging 
may not be robust enough. Several robust aggregation algorithms [177] have been developed, such as Trimmed 
Mean or Krum, which discard outlier updates from clients that deviate significantly from the majority, 
preventing malicious updates from contaminating the global model. 

• Secure federated learning: In scenarios where adversarial clients can actively launch poisoning attacks, 
techniques like secure multi-party computation (SMC) and secure aggregation are used to ensure that the 
model updates remain confidential and that the global model is protected from malicious manipulation [178]-
[180]. In secure aggregation, clients compute their updates in a way that prevents the server from learning 
individual updates until they are aggregated [181], thereby reducing the opportunity for attackers to target 
specific clients. 

FL can also utilize Federated Adversarial Training (FAT), a technique where the model is trained to be more robust 
against adversarial inputs by including adversarial examples during the training process. This approach helps ensure 
that the model can resist attacks [182] when deployed in heterogeneous environments with a high risk of adversarial 
manipulation. 

5.3. Secure communication in heterogeneous networks 

Communication is a key component in federated learning systems, especially in heterogeneous networks, where devices 
have varying connectivity, bandwidth, and computational capabilities. The communication channels between devices 
and the central server are vulnerable to eavesdropping, man-in-the-middle attacks, and tampering [183]-[186]. 

• Encryption and authentication: To secure communication, FL incorporates end-to-end encryption protocols 
[187], ensuring that the updates sent from clients to the server are protected during transmission. This 
encryption prevents unauthorized entities from accessing the updates, thus protecting both the integrity of the 
global model and the privacy of the clients [188], [189]. Additionally, mutual authentication protocols are 
crucial for verifying the identity of both the clients and the server before the exchange of sensitive model 
updates, preventing unauthorized devices from participating in the federated learning process. 

• Lightweight encryption protocols: Given the resource-constrained nature of many devices in heterogeneous 
networks (e.g., IoT sensors, mobile phones), using lightweight encryption protocols is vital [190], [191]. These 
protocols strike a balance between security and computational efficiency, enabling secure communication 
without heavily taxing the devices' limited computational resources [192]. Techniques such as elliptic curve 
cryptography (ECC) are commonly used for secure communication in such contexts. 
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By securing the communication process in federated learning, these measures reduce the likelihood of data leakage or 
attack, which is particularly critical in heterogeneous environments where devices may have varying security 
capabilities. 

5.4. Model integrity and integrity verification 

Maintaining the integrity of the global model is essential to the success of federated learning [193], especially in 
heterogeneous networks where devices have varying levels of trustworthiness. Clients in these networks may 
intentionally or unintentionally send inaccurate updates, which could harm the model’s accuracy and reliability. 

• Model validation and checkpoints: One approach to maintaining model integrity is checkpointing, where 
intermediate models are periodically validated before further aggregation [194]. This ensures that only models 
that meet specific performance or accuracy benchmarks are used for global aggregation [195]. In case of 
unexpected drops in performance, the system can revert to a previous model checkpoint to minimize the impact 
of potential tampering. 

• Blockchain for model auditing: Another promising approach for ensuring model integrity is the use of 
blockchain technology [196]. Blockchain can be used to create an immutable audit trail of all model updates 
and transactions. This provides an additional layer of transparency and accountability [197], allowing the 
system to track and verify model changes, detect unauthorized modifications, and ensure that all updates are 
legitimate. 

5.5. Defending against Sybil and DDoS attacks 

In heterogeneous networks, especially when many low-cost, resource-constrained devices are involved, Sybil attacks 
(where a malicious actor creates multiple fake identities to manipulate the system) and Distributed Denial of Service 
(DDoS) attacks are potential threats [198], [199]. These attacks can overwhelm the system or skew the model’s training 
process. 

• Client authentication and reputation systems: A robust client authentication mechanism, combined with a 
reputation system, can help defend against Sybil attacks [200], [201]. Clients with a high reputation (i.e., 
historically reliable devices) can be given more weight in model aggregation, whereas suspicious or low-
reputation clients can be excluded or down-weighted. 

• Rate limiting and traffic filtering: To prevent DDoS attacks, rate limiting and traffic filtering mechanisms can be 
employed to detect and mitigate large volumes of malicious updates. These mechanisms can identify abnormal 
communication patterns and prevent malicious nodes [202] from overwhelming the server or the federated 
learning process. 

It is clear that federated learning offers a powerful framework for enhancing security in heterogeneous networks by 
keeping sensitive data local, employing robust privacy-preserving techniques, and securing communication channels 
[203]. It enables secure, decentralized collaboration for model training while mitigating the risks posed by adversarial 
attacks, ensuring model integrity, and preventing data leakage. However, deploying FL in such environments requires 
careful consideration of security issues, including device heterogeneity, varying computational resources, and the 
presence of malicious actors [204]. By integrating advanced techniques such as differential privacy, secure aggregation, 
robust aggregation methods, and blockchain auditing, FL can significantly improve the security and reliability of data 
analytics in heterogeneous networks [205], paving the way for more secure, scalable, and privacy-preserving machine 
learning applications. 

6. Research gaps and future research scopes 

Federated learning has emerged as a promising solution to enhance data privacy and security, especially in the context 
of heterogeneous networks [206]. By keeping data localized on distributed devices, FL offers the advantage of avoiding 
centralized data collection, which can be vulnerable to security breaches. However, despite its potential, there are 
significant research gaps that need to be addressed to ensure the security and efficiency [207] of federated learning in 
heterogeneous networks. These gaps span multiple aspects, including model robustness, privacy-preserving 
techniques, secure communication, adversarial defense mechanisms, and system-level optimization. 

This section identifies and extensively describes these research gaps in the context of Federated Learning for security 
enhancement in heterogeneous networks. 
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6.1. Model robustness in heterogeneous environments 

Heterogeneous networks consist of devices with varying computational power, storage capacity, network bandwidth, 
and data characteristics [208]. These disparities introduce several challenges for Federated Learning, especially in 
terms of model robustness. Some key research gaps include: 

6.1.1. Handling non-IID data 

One of the most significant challenges in FL for heterogeneous networks is the issue of non-independent and identically 
distributed (Non-IID) data [209]. In many real-world scenarios, the data on different clients can be highly skewed, which 
can lead to biased or suboptimal model performance. Current FL algorithms often assume that the data on each device 
is IID, but this assumption is rarely true in heterogeneous environments [210], [211]. Further research is needed to 
develop more robust federated learning algorithms that can effectively [212] handle Non-IID data, ensuring that the 
global model performs well across diverse data distributions. 

6.1.2. Dynamic device participation 

 In heterogeneous networks, devices may join and leave the learning process at any time due to issues like network 
connectivity, battery constraints, or resource availability [213]. This dynamic participation can lead to issues like model 
convergence delays or instabilities. Developing techniques that can adapt to the dynamic nature of device participation 
without compromising the model’s performance or security is an important area of research. 

6.1.3. Stragglers and delayed updates 

Some clients in a heterogeneous network may have lower computational capabilities, resulting in slower training times 
[214]. These slower clients, known as "stragglers," can introduce delays in the aggregation process, slowing down 
convergence. Current FL systems often fail to account for the heterogeneous processing speeds of clients [215]. 
Research is needed to devise more efficient aggregation algorithms that can handle straggler issues and improve the 
convergence time in diverse device environments. 

6.2. Security against adversarial attacks in heterogeneous networks 

Federated learning in heterogeneous networks is particularly vulnerable to adversarial attacks [216], where malicious 
clients send poisoned updates to disrupt the global model’s training. These attacks can significantly degrade model 
performance and compromise security [217]. Several research gaps in adversarial defense mechanisms need to be 
addressed: 

6.2.1. Poisoning attacks and robust aggregation 

While current methods like Federated Averaging (FedAvg) work well in ideal conditions, they are highly susceptible to 
poisoning attacks [218]. Malicious clients can inject inaccurate or malicious updates to corrupt the global model [219]. 
Research is needed to develop more robust aggregation techniques that can distinguish between legitimate and 
malicious updates, ensuring that the global model remains resilient to adversarial manipulation. Approaches such as 
Byzantine Fault Tolerance (BFT) and robust aggregation methods like Krum or Trimmed Mean need further refinement 
and optimization for heterogeneous environments. 

6.2.2. Defending against model inversion and membership inference attacks 

In federated learning, attackers can attempt to infer private data or membership information based on model updates 
[220]. Model inversion attacks aim to reconstruct private data from the model's outputs, while membership inference 
attacks attempt to determine whether a particular data point was used in training the model [221]. Addressing these 
types of attacks in heterogeneous networks, where the data is distributed across diverse devices, is a pressing research 
need. Techniques like differential privacy and secure multi-party computation (SMC) need to be integrated and 
optimized for these specific attack vectors. 

6.2.3. Federated adversarial training 

 One area where federated learning could be enhanced is in the integration of adversarial training, which improves 
model robustness [222] by incorporating adversarial examples during training. However, adversarial training in FL is 
still in its infancy [223], and further research is required to develop decentralized adversarial training mechanisms that 
do not compromise privacy while defending against adversarial examples. 
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6.3. Privacy-preserving techniques in federated learning 

While federated learning inherently improves privacy by keeping data localized [224], additional privacy-preserving 
techniques are necessary to protect sensitive information during model updates and aggregation. Key research gaps 
include: 

6.3.1. Advanced Differential Privacy (DP) techniques 

Differential privacy is one of the most widely adopted privacy-preserving techniques in FL [225]. However, ensuring 
strong privacy guarantees without significantly affecting model performance is a challenge. Research is needed to 
explore advanced DP techniques, such as local differential privacy, that can provide stronger privacy guarantees with 
minimal impact on the model's accuracy [226], [227]. There is also a need to develop adaptive DP mechanisms that can 
balance privacy and utility based on the privacy requirements of different clients. 

6.3.2. Secure aggregation and homomorphic encryption 

Secure aggregation ensures that the central server cannot access individual client updates, while homomorphic 
encryption allows computations to be performed on encrypted data without decryption [228], [229]. While both 
techniques have shown promise in federated learning, their implementation in heterogeneous networks remains a 
significant research challenge. The computational overhead required for these techniques can be prohibitive, 
particularly in resource-constrained devices. Research into more lightweight cryptographic techniques [230] that can 
enable secure aggregation and homomorphic encryption for heterogeneous devices is needed to ensure that these 
privacy mechanisms can be deployed at scale. 

6.3.3. Privacy in cross-domain federated learning 

Heterogeneous networks often consist of clients from different domains, each with its own privacy and security policies 
[231]. Cross-domain federated learning, where devices from different organizations or sectors collaborate without 
sharing sensitive data, poses additional privacy challenges. Research is needed to develop privacy-preserving 
techniques [232] that can facilitate secure cross-domain FL while ensuring that privacy regulations, such as GDPR and 
HIPAA, are met. 

6.4. Secure communication in federated learning 

In heterogeneous networks, secure communication is critical to prevent eavesdropping, man-in-the-middle attacks, and 
tampering of model updates during transmission [233]. Research gaps in secure communication protocols for FL 
include: 

6.4.1. Lightweight cryptographic protocols 

Many devices in heterogeneous networks, such as IoT sensors and mobile devices, have limited processing power and 
bandwidth [234]. While traditional encryption methods provide strong security, they can impose a significant 
computational and communication burden on such devices [235], [236]. Research is needed to develop lightweight 
cryptographic protocols [237] that can provide secure communication while minimizing overhead. Techniques like 
elliptic curve cryptography (ECC) and homomorphic encryption need to be optimized for low-power, resource-
constrained devices in FL. 

6.4.2. Efficient Secure Multi-Party Computation (SMC) 

Secure multi-party computation allows multiple parties to compute a function without revealing their private data 
[238]. While SMC has been proposed as a way to secure federated learning, it suffers from significant computational 
and communication overheads [239]. Developing more efficient SMC protocols that are practical for heterogeneous 
networks with varying device capabilities is a key research gap. 

6.4.3. Communication efficiency and privacy 

As heterogeneous networks expand, communication efficiency becomes a major concern, especially when it comes to 
sending model updates from clients to the server [240]. Current FL approaches often require frequent communication, 
which can result in high latency and excessive bandwidth consumption [241]. Research is needed to design privacy-
preserving techniques [242] that reduce the communication burden while still ensuring data security. Compression 
methods and federated distillation can help mitigate this issue by reducing the size of updates without compromising 
privacy. 
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6.5. System-level optimization and scalability 

One of the critical challenges in deploying federated learning at scale in heterogeneous networks is ensuring system-
level optimization. Some of the key research gaps in this area include: 

6.5.1. Scalable federated learning architectures 

In large-scale heterogeneous networks, the number of devices can reach millions or even billions, posing scalability 
challenges for FL [243]. Current FL algorithms struggle to scale efficiently as the number of devices grows [244]. 
Research is needed to design scalable architectures that can handle a large number of devices while maintaining security 
and performance. This includes techniques like asynchronous federated learning, model partitioning, and peer-to-peer 
federated learning that can scale without overwhelming the central server. 

6.5.2. Resource-aware federated learning 

Devices in heterogeneous networks have varying resources (e.g., battery, computational power, storage), which can 
impact the efficiency of the federated learning process [245], [246]. Research is needed to develop resource-aware 
federated learning algorithms that can dynamically adjust the participation of clients based on their available resources, 
network conditions, and computational capabilities. Such mechanisms will improve the overall efficiency and security 
of the system. 

6.5.3. Fairness and incentivization 

Federated learning relies on voluntary participation from clients, and ensuring fairness in the contribution of clients is 
essential for its success. Research on incentive mechanisms and fairness models is needed to ensure that clients 
contribute meaningful updates without being incentivized to engage in malicious behavior. These models must take into 
account the heterogeneity in devices [247], ensuring equitable contributions from clients with different capabilities. 

While federated learning offers a promising approach to secure and privacy-preserving data analytics in heterogeneous 
networks [248], several research gaps remain in improving its security, efficiency, and scalability. These gaps include 
developing robust mechanisms for handling non-IID data, defending against adversarial attacks, optimizing privacy-
preserving techniques, securing communication channels, and addressing system-level challenges such as scalability 
and resource constraints [249]-[253]. By addressing these challenges, Federated Learning can become a more effective 
and secure solution for distributed machine learning in heterogeneous networks, enabling the development of privacy-
preserving and robust data analytics systems.  

7. Conclusion 

Federated learning has emerged as a revolutionary approach to distributed machine learning, particularly in 
heterogeneous networks, where data is dispersed across a diverse range of devices with varying capabilities. FL allows 
collaborative model training without the need to centralize sensitive data, offering significant benefits for privacy, 
security, and efficiency. However, as heterogeneous networks continue to expand and evolve, the security challenges 
associated with FL become increasingly complex. This survey has explored the various facets of Federated Learning for 
security enhancement in heterogeneous environments, focusing on privacy preservation, adversarial defenses, secure 
communication, and model integrity. Despite the advancements made in federated learning, significant research gaps 
still persist in ensuring robust security mechanisms across heterogeneous networks. These challenges include handling 
non-IID data, developing effective defenses against adversarial attacks, securing communication channels, and 
providing scalable, resource-efficient solutions. Additionally, the integration of advanced privacy-preserving techniques 
such as differential privacy, secure aggregation, and homomorphic encryption requires further optimization to balance 
privacy guarantees with model performance, especially when applied in resource-constrained devices. The future of 
Federated Learning in heterogeneous networks lies in addressing these security and privacy challenges while 
improving system efficiency and scalability. This will involve refining existing algorithms, developing novel techniques 
for secure aggregation and adversarial training, and enhancing the ability of FL systems to handle the dynamic and 
diverse nature of heterogeneous networks. Furthermore, interdisciplinary research that integrates cryptographic, 
machine learning, and networking techniques will be crucial in shaping secure and scalable Federated Learning systems.  
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