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Abstract 

The cross-diffusive Brusselator equation is a reaction-diffusive system that models complex chemical and biological 
process with both self-diffusion and cross-diffusion effects. These equations exhibit rich spatiotemporal dynamics, 
including Turing patterns and instability-driven pattern formations. Despite its significance, the computational cost of 
solving high-dimensional discretized versions of the cross-diffusive Brusselator equation can be prohibitive, 
particularly in parameter-dependent or long-time simulations. This study presents a model order reduction (MOR) 
framework tailored to the Brusselator equation, leveraging Proper Orthogonal Decomposition (POD) combined with 
Galerkin projection along with the Discrete Empirical Interpolation Method (DEIM) and the Dynamic Mode 
Decomposition Method (DMD) to efficiently approximate nonlinear dynamics. The reduced models are constructed to 
preserve key features of the original system, including stability and accuracy, while achieving substantial computational 
savings. Numerical experiments validate the proposed approach, demonstrating its effectiveness in capturing the 
essential dynamics of the Brusselator equation under various parameter settings. These findings provide a robust 
pathway for efficient simulation and analysis of reaction-diffusion systems in scientific and engineering applications.  

Keywords: Model Order Reduction; Cross-Diffusive Brusselator Equation; Proper Orthogonal Decomposition; 
Discrete Empirical Interpolation Method; Dynamic Mode Decomposition; Reaction-Diffusion Systems; Computational 
Efficiency 

1. Introduction

Reaction-diffusion systems are central to modeling various physical, chemical, and biological processes, from chemical 
oscillations to pattern formation in biological systems. Among these, the Brusselator equation stands out as a 
paradigmatic model for studying oscillatory chemical reactions and nonlinear dynamics [12]. Originally introduced to 
capture the essence of autocatalytic reactions, the Brusselator has become a benchmark system for exploring 
spatiotemporal phenomena and the onset of complex patterns under varying parameter regimes. However, classical 
Brusselator models assume that the species diffuse independently of each other, neglecting interactions between the 
diffusion process of different species.  

In many real-world applications, such as in ecological models, chemical process, or biological systems, the diffusion of 
one species may be influenced by the concentration gradients of others. This interaction is captured by cross-diffusion, 
where the diffusion of each species is coupled with the concentration gradient of the other species. The cross-diffusive 
Brusselator equation extends the classical model by incorporating these cross-diffusion effects, providing a more 
realistic representation of coupled reaction-diffusion systems. Despite its theoretical and practical significance, solving 
the high-dimensional discretized cross-diffusive Brusselator equation remains computationally expensive, particularly 
when dealing with large spatial domains, fine resolutions, or parametric studies. These challenges are exacerbated in 
scenarios requiring real-time simulations or repeated evaluations, such as optimization, uncertainty quantification, or 
control problems. 
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Model Order Reduction (MOR) techniques offer a powerful solution to the computational challenges posed by high-
dimensional systems [6, 8]. These methods construct low-dimensional surrogate models that approximate the full-
order system with minimal loss of accuracy, enabling significant acceleration of simulations while maintaining the 
essential dynamics of the system. Techniques such as Proper Orthogonal Decomposition (POD) [7, 8, 9], Discrete 
Empirical Interpolation Method (DEIM) [2, 4, 5, 11], and Dynamic Mode Decomposition (DMD) [1] have proven 
particularly effective in addressing the nonlinearities and stiffness inherent in reaction-diffusion equations. POD is 
widely used to extract the dominant modes of a system from time-dependent data, making it an efficient method for 
model reduction. DEIM complements POD by approximating the nonlinear terms in a reduced space, thus helping to 
reduce the computational burden associated with nonlinear dynamics. Additionally, DMD provides a data-driven 
approach to capture the dynamic behavior of the system by identifying the dominant temporal and spatial modes, 
making it especially useful for systems where explicit equations may not be available. Together, these methods offer 
complementary strategies for tackling the challenges of reducing the complexity of reaction-diffusion systems while 
preserving their key characteristics. 

In this paper, we propose a tailored MOR framework for the cross-diffusive Brusselator equation, leveraging these 
techniques to construct efficient and reliable reduced models. Our approach ensures the preservation of critical features, 
such as stability and pattern formation dynamics, while achieving substantial computational gains. Through a series of 
numerical experiments, we demonstrate the efficacy of the proposed method across different parameter regimes, 
highlighting its potential for broader applications in reaction-diffusion systems. 

We consider the following system, namely cross-diffusive Brusselator equation 

𝑢𝑡 = 𝑑11 𝛥𝑢 + 𝑑12 𝛥𝑣 + 𝑓(𝑢, 𝑣) 

𝑣𝑡 = 𝑑21 𝛥𝑢 + 𝑑22 𝛥𝑣 + 𝑔(𝑢, 𝑣) 

where 𝛥𝑢  and 𝛥𝑣  represent the Laplacian operators; 𝑑11, 𝑑12, 𝑑21, 𝑑22 are diffusion coefficients for species 𝑢  and 𝑣 . 
𝑓(𝑢, 𝑣) and 𝑔(𝑢, 𝑣) are the nonlinear reaction terms: 𝑓(𝑢, 𝑣) = −(𝛽 + 1)𝑢 + 𝑢2𝑣 + 𝛼 and 𝑔(𝑢, 𝑣) = 𝛽𝑢 − 𝑢2𝑣. 

2. Full order model 

This section outlines the DG discretization of the semi-discrete (continuous in time) form of the cross-diffusive 
Brusselator equation with homogeneous Neumann (zero-flux) boundary conditions [3]. We begin by describing the 
classical (continuous) weak solution of the equation, which satisfies the variational formulation for 𝑡 ∈ (0, 𝑇], 

(𝑢𝑡 , 𝑤1) + 𝑎(𝑑11; 𝑢, 𝑤1) + 𝑎(𝑑12; 𝑣, 𝑤1) − (𝑓(𝑢, 𝑣), 𝑤1) = 0,⩝ 𝑤1, 

(𝑣𝑡 , 𝑤2) + 𝑎(𝑑21; 𝑣, 𝑤2) + 𝑎(𝑑22; 𝑣, 𝑤2) − (𝑔(𝑢, 𝑣), 𝑤2) = 0,⩝ 𝑤2 

 With the initial conditions satisfying 

(𝑢(0), 𝑤1) = (𝑢0, 𝑤1), (𝑣(0), 𝑤2) = (𝑣0, 𝑤2). 

 The expression (⋅,⋅): = (⋅,⋅)Ω represents the 𝐿2 inner product over the domain Ω, where the inner product is defined as 
the integral of the product of two functions over Ω. The test functions 𝑤1and 𝑤2 are used to approximate the solution in 
the weak formulation. Additionally, the bilinear form 𝑎(𝑑; 𝑢, 𝑤) = (𝑑𝛻𝑢, 𝛻𝑤)Ω refers to the classical bilinear form. 

Let 𝜖ℎ be the disjoint partition of the domain Ω with disjoint elements (triangles) {𝐸𝑖}𝑖=1
𝑁𝑒𝑙 ∈ 𝜖ℎ, where 𝑁𝑒𝑙  denotes the 

number of elements in the partition. On 𝜖ℎ, we set the discrete solution and test function space is defined as: 

𝐷𝑘  =  𝐷𝑘(𝜖ℎ) ∶=  { 𝑤 ∈  𝐿2(Ω): 𝑤𝐸 ∈  𝑃𝑘(𝐸) ∀ 𝐸 ∈ 𝜖ℎ }  where 𝑃𝑘(𝐸) is the space of polynomials of degree at most 𝑘 
defined on each element 𝐸 ∈ 𝜖ℎ. 

Next, by multiplying equation by the test functions 𝑤1 and 𝑤2  and applying Green’s theorem to each element of the 
mesh, we obtain the semi-discrete variational formulation, where for all 𝑡 ∈ (0, 𝑇], we seek 𝑢ℎ(𝑡) and 𝑣ℎ(𝑡) in 𝐷𝑘  that 

satisfy the following system: 
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(
 ∂uh 

 ∂t
, 𝑤1) + 𝑎ℎ(𝑑11; 𝑢ℎ, 𝑤1) + 𝑎ℎ(𝑑12; 𝑣ℎ, 𝑤1) − (𝑓(𝑢ℎ, 𝑣ℎ), 𝑤1) = 0,⩝ 𝑤1 ∈ 𝐷𝑘 , 

(
 ∂vh 

 ∂t
, 𝑤2) + 𝑎ℎ(𝑑21; 𝑣ℎ , 𝑤2) + 𝑎ℎ(𝑑22; 𝑣ℎ , 𝑤2) − (𝑔(𝑢ℎ, 𝑣ℎ), 𝑤2) = 0,⩝ 𝑤2 ∈ 𝐷𝑘 , 

here the SIPG bilinear form 𝑎ℎ(𝑑; 𝑢, 𝑤) is expressed as follows: 

𝑎ℎ(𝑑; 𝑢, 𝑤) = ∫ 𝑑∇u . ∇w dx 
Ω

+ ∑(𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑡𝑒𝑟𝑚𝑠)

∂Ω

 

This bilinear form involves the integral of the product of the gradients of the solution u and test function w over the 
domain Ω, with an additional contribution from the boundary terms, which are handled using the Symmetric Interior 
Penalty Galerkin (SIPG) method [10]. The boundary terms are designed to ensure stability and conformity at the domain 
boundaries, particularly when dealing with non-matching meshes or discontinuities at the element interfaces. 

The SIPG method is widely used in solving PDEs in finite element analysis, especially for reaction-diffusion equations 
and cross-diffusion systems, as it allows for higher-order accuracy and flexibility when dealing with complex boundary 
conditions and discontinuous coefficients.  

By introducing the degrees of freedom 𝑁 ∶=  𝑁𝑙𝑜𝑐 × 𝑁𝑒𝑙 , where 𝑁𝑙𝑜𝑐  is the local dimension of each element, dependent 
on the polynomial order 𝑘, the semi-discrete DG solutions of equation can be written as: 

𝑢ℎ(𝑡) = ∑ 𝑢𝑖(𝑡)𝜙𝑖 ,

𝑁

𝑖=1

𝑣ℎ(𝑡) = ∑ 𝑣𝑖(𝑡)𝜙𝑖.

𝑁

𝑖=1

 

Here, 𝑢(𝑡) = (𝑢1(𝑡), … , 𝑢𝑁(𝑡))
𝑇

and 𝑣(𝑡) = (𝑣1(𝑡), … , 𝑣𝑁(𝑡))
𝑇

represents vectors of time-dependent unknown coefficients 

for 𝑢ℎ and 𝑣ℎ , respectively, and 𝜙 = (𝜙1, … , 𝜙𝑁)𝑇 is the vector of basis functions. Substituting these expressions into the 
scheme (6) and choosing 𝑤1 = 𝑤2 = 𝜙𝑖  for 𝑖 =  1, … , 𝑁, we obtain a system of 2 × 𝑁 dimensional ordinary differential 
equations (ODEs) for the unknown vectors 𝑢 and 𝑣 as  

𝑀𝒖𝑡 + 𝑆𝑢𝒖 + 𝑆𝑢𝑣𝒗 − 𝐹(𝒖, 𝒗) = 0, 

𝑀𝒗𝑡 + 𝑆𝑣𝒗 + 𝑆𝑣𝑢𝒖 − 𝐺(𝒖, 𝒗) = 0. 

Here 𝑀, 𝑆𝑢 , 𝑆𝑣 , 𝑆𝑢𝑣 , 𝑆𝑣𝑢  ∈ 𝑅𝑁×𝑁 denote the mass matrix and the stiffness matrices for the diffusion and cross-diffusion 
terms, while the remaining terms represent vectors in 𝑅𝑁 associated with the unknown coefficients u and v. 

This obtained semi-discretized form is discretized in time by implicit Euler method. We split the time interval [0, 𝑇] into 
𝐽  equally-length subintervals (𝑡𝑘−1, 𝑡𝑘]  with 0 =  𝑡0  <  𝑡1  < ···<  𝑡𝐽  =  𝑇  with the uniform step-size 𝛥𝑡 =  𝑡𝑘  −

 𝑡𝑘−1, 𝑘 =  1,2, . . . , 𝐽.  Using the implicit Euler scheme, we replace the time derivatives in the semi-discrete form with 
finite differences 

(𝑀 + Δ𝑡. 𝑆𝑢)𝐮k+1 + Δt. Suv𝒗𝒌+𝟏 − M𝒖𝒌 − Δt. 𝐹(𝒖𝒌+𝟏, 𝒗𝒌+𝟏) = 0, 

(𝑀 + Δ𝑡. 𝑆𝑣)𝐯k+1 + Δt. Svu𝒖𝒌+𝟏 − M𝒗𝒌 − Δt. 𝐺(𝒖𝒌+𝟏, 𝒗𝒌+𝟏) = 0. 

This obtained fully-discrete system of nonlinear equations is solved by Newton’s method on each time interval (𝑡𝑘−1, 𝑡𝑘] 
with 0 =  𝑡0  <  𝑡1  < ···<  𝑡𝐽  =  𝑇. 

3. Reduced order model 

The cross-diffusive Brusselator equation, a classical reaction-diffusion model, is widely used to study oscillatory 
chemical reactions and complex spatial-temporal patterns. While its theoretical importance is well-established, solving 
high-dimensional discretized versions of this model can become computationally expensive, especially for real-time 
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simulations, parametric studies, or optimization tasks. This motivates the use of model reduction techniques to simplify 
the problem while retaining its essential dynamics. 

Several reduction methods have proven effective for reaction-diffusion systems like the Brusselator, including POD, 
DEIM, and DMD. Each of these approaches offers unique advantages in capturing the dominant features of the system. 
POD reduces the complexity of a system by constructing a low-dimensional subspace from high-fidelity simulation data, 
typically using snapshot-based analysis. For the Brusselator Equation, POD identifies the most energy-dominant modes 
of the reaction-diffusion dynamics, enabling efficient approximation of the state variables with minimal loss of accuracy. 
DEIM is often combined with POD to handle nonlinearities efficiently. In the Brusselator model, where nonlinear 
reaction terms play a crucial role in generating complex behaviors, DEIM approximates these terms in a reduced-
dimensional space, significantly accelerating computations without compromising precision. DMD focuses on extracting 
spatiotemporal modes from data, offering a purely data-driven approach to model reduction. For the Brusselator 
equation, DMD can capture dominant oscillatory patterns and uncover coherent structures, making it particularly useful 
for analyzing dynamic behaviors and predicting future states. 

These methods, individually or in combination, provide a robust framework for reducing the computational burden of 
solving the Brusselator equation. In this study, we explore their application to the Brusselator model, evaluating their 
effectiveness in preserving key features such as pattern formation and oscillatory dynamics, while achieving significant 
computational gains. The insights derived can extend to other reaction-diffusion systems, broadening the utility of these 
reduction techniques in scientific and engineering problems. 

The reduced-order model (ROM) for our equation, with a dimension 𝑘 ≪ 𝑁, is constructed by approximating the full-

order model (FOM) solutions 𝑢(𝑡) and 𝑣(𝑡) within a subspace spanned by a set of M-orthogonal basis functions {𝜓𝑢,𝑖}𝑖=1

𝑘 
 

and {𝜓𝑣,𝑖}𝑖=1

𝑘 
 where 𝑘 represents the reduced dimension in 𝑅𝑁 . The ROM solutions are then obtained by projecting the 

system onto this subspace. The approximate ROM solutions take the form: 

𝑢(𝑡) ≈ ∑ ũ𝑖(t)ψu,i, 𝑣(𝑡) ≈ ∑ ṽ𝑖(𝑡)ψv,i,

𝑘

𝑖=1

 

𝑘

𝑖=1

 

where ũ(𝑡) = (ũ1(t), … ũ𝑘(t))
𝑇

and ṽ(t) = (ṽ1(𝑡), … , ṽ𝑘(𝑡))
𝑇

are the coefficients vectors for the ROM solutions. The 

reduced basis functions {ψu,i} and {ψv,i} are in the form of linear combination of the DG basis functions  

ψu,i ≈ ∑ Ψu,j,i 𝜙𝑗(𝑥) = 𝜙Ψ𝑢 ,       ψv,i ≈ ∑ Ψv,j,i 𝜙𝑗(𝑥) = 𝜙Ψ𝑣 ,

𝑁

𝑖=1

 

𝑁

𝑖=1

 

where the coefficient vectors of the reduced basis function ψu,i  and ψ𝑣,i  are in the columns of the matrices Ψ𝑢 =

[𝜓𝑢,.,1, … , 𝜓𝑢,.,𝑘] ∈ 𝑅𝑁×𝑘  and Ψ𝑣 = [𝜓𝑣,.,1, … , 𝜓𝑣,.,𝑘] ∈ 𝑅𝑁×𝑘 . 

The M-orthogonal reduced basis functions ψu,i and ψ𝑣,i for i=1,2,…,k, are derived using the POD method [9]. This process 

starts by constructing snapshot matrices 𝑈 = [𝒖𝟏, … , 𝒖𝒋] and 𝑉 = [𝒗𝟏, … , 𝒗𝒋] ∈ 𝑅𝑁×𝐽, where each column represents the 

coefficient vector corresponding to the discrete solutions {𝑢𝑖}𝑖=1
𝐽  and {𝑣𝑖}𝑖=1

𝐽  of the full-order model (FOM) for equation 

(25) at specific time instances Here, 𝑢𝑖  ≈  𝑢(𝑡𝑖) and 𝑣𝑖  ≈  𝑣(𝑡𝑖). 

For 𝑤 ∈ {𝑢, 𝑣}, the M-orthogonal reduced basis functions {ψw,i}𝑖=1
𝑘  are obtained by solving an optimization problem that 

minimizes the error between the original snapshot data and its projection onto a k-dimensional subspace in the M-
orthogonal sense. 

min
𝜓𝑤,1,…,𝜓𝑤,𝑘 

1

𝐽
 ∑ ∥ 𝑤𝑗 − ∑ (𝑤𝑗 , 𝜓𝑤,𝑖)𝐿2(Ω)

𝜓𝑤,𝑖|_𝑑^2 ∥𝐿2(Ω)
2  

 

𝑘

𝑖=1

𝐽

𝑗=1

 

subjected to (𝜓𝑤,𝑖, 𝜓𝑤,𝑗)
𝐿2(Ω)

= Ψ𝑤,.,𝑖
𝑇 𝑀Ψ𝑤,.,𝑗 = 𝛿𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑘, with kronecker delta 𝛿𝑖𝑗 . 

Using the above equations, we obtain 𝒖 = Ψuũ, 𝒗 = Ψv ṽ. 
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When we substitute this into the FOM, we obtain the following ROM: 

𝑴ũ𝑡 + 𝑺𝒖ũ + 𝑺𝒖𝒗ṽ − 𝐹(𝚿𝐮ũ, 𝚿𝐮ṽ) = 0, 

𝑴ṽ𝑡 + 𝑺𝒗ṽ + 𝑺𝒗𝒖ũ − 𝐺(𝚿𝐯ũ, 𝚿𝐯ṽ) = 0, 

with the reduced matrices 𝑴 = Ψ𝑢
𝑇𝑀Ψu,  𝑺𝒖 = Ψ𝑢

𝑇𝑆Ψu,  𝑺𝒖𝒗 = Ψ𝑢
𝑇𝑆Ψv, 𝑺𝒗 = Ψ𝑣

𝑇𝑆Ψ𝑣 , 𝑆𝑣𝑢 =  Ψ𝑣
𝑇𝑆Ψ𝑢 . 

Although the dimension of this reduced system is small, the computation of the nonlinear terms still relies on the full-
system dimension. To address this, we employ the DEIM [11] to approximate the nonlinear functions 𝐹 and 𝐺 using a 
lower-dimensional subspace. This subspace is constructed from a set of snapshots of the nonlinear function values in a 
similar way with POD [6]. 

As an alternative to DEIM, DMD, data-driven post-processing technique used to extract dynamic and spatially relevant 
information from numerical or experimental datasets, is also used. This method is particularly useful for analyzing 
complex systems without needing explicit knowledge of the governing equations. The DMD algorithm identifies 
eigenvalues, eigenmodes, and spatial structures associated with each mode, offering insights into the underlying 
dynamics [1]. In this context, we compare the effectiveness of DMD with the DEIM for approximating nonlinear terms 
in state equations. While both methods serve to reduce the computational complexity, DMD focuses on capturing 
dynamic behavior and system modes from data, while DEIM optimizes the approximation of nonlinear functions in 
reduced-order models, providing complementary approaches to model reduction and system analysis. 

4. Numerical results 

We consider the cross-diffusive Brusselator model on the spatial time domain 𝑄 = Ω × [0, 𝑇] = [0,20]2 × [0,100] with 
the following spatial and temporial mesh sizes 𝛥𝑥 = 𝛥𝑦 = 0.3125, 𝛥𝑡 = 0.05. For the time discretization, we use implicit 
Euler method. 

We consider zero flux boundary conditions with the following initial conditions 

𝑢(𝑥, 𝑦, 0) = 5.8 +
1

3
. 𝑟𝑎𝑛𝑑(𝑥) ,   𝑣(𝑥, 𝑦, 0) = 0.13 +

1

10
. 𝑟𝑎𝑛𝑑(𝑥). 

The parameters are chosen as  

(𝑑11, 𝑑12, 𝑑21, 𝑑22, 𝛼, 𝛽) = (0.4, 32, 0.02, 2, 6, 1). 

For 𝑑12 = 24, the resulting patterns is spots; for 𝑑12 = 32, it is labyrinthic-like patterns. 

The POD basis functions are determined according to the relative information content (RIC) 

𝜖(𝑘) =
∑ 𝜎𝑖

2𝑘
𝑖=1

∑ 𝜎𝑖
2𝑠

𝑖=1

 

which represents the energy captured by the first 𝑘 POD modes over all 𝑠 POD modes, 𝑠 is the rank of snapshot matrix, 
and 𝜎𝑖  is the corresponding singular value of i-th mode. In the following results, 𝑘 is chosen as 𝑚𝑖𝑛𝑘𝜖(𝑘) ≥ 99.99%. 

In the following results, we use 26 POD, 90 DEIM, and 90 DMD basis functions. In Figure 1, the FOM solutions for the 
cross-diffusive Brusselator equation are shown. In Figure 2, the decay of the singular values related to 𝒖 and 𝒗 are given. 
ROM solutions and the corresponding errors are given in Figure 3 and Figure 4, resp. In Figure 5 and Table 1, we also 
see relative 𝐿2  errors between FOM and ROMs. In these graphs, it is evident that the reduced models successfully 
capture key dynamics, such as Turing patterns and other spatiotemporal structures, when compared to the full system 
solution. The POD-based reduced model achieves a high level of accuracy with significantly fewer degrees of freedom, 
and as the number of POD modes increases, the reduced model solution converges more closely to the full solution. 
Even with a relatively low number of modes, the reduced model effectively captures the essential dynamics of the 
system. In terms of computational efficiency, the reduced models show a considerable reduction in simulation time, 
highlighting their advantage in long-time simulations or parameter-dependent studies. These results clearly 
demonstrate how POD, DEIM, and DMD methods can be effectively used to solve complex reaction-diffusion systems 
like the Brusselator, while preserving the key dynamic behaviors and significantly reducing computational costs. 
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Figure 1 FOM solutions for the component u (left), v(right) 

  

 

Figure 2 Decay of the singular values for u, v (left) and the nonlinearity f, g (right) 
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Figure 3 POD (top), POD-DEIM (middle), POD-DMD (bottom) solutions for the state components 𝒖𝟏 (left), 𝒖𝟐 (right) 
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Figure 4 POD (top), POD-DEIM (middle), POD-DMD (bottom) errors for the state components 𝒖𝟏 (left), 𝒖𝟐 (right) 

 

Figure 5 Relative 𝑳𝟐 errors with increasing number of modes: POD(left), POD-DEIM(right), POD-DMD(bottom) 
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Table 1 Results with POD, POD-DEIM and POD-DMD (from top to bottom)  

 Relative 𝑳𝟐 Error 𝒖𝟏 Relative 𝑳𝟐 Error 𝒖𝟐 Speed-up 

POD 1.62𝑒 − 02 9.18𝑒 − 03 3.30 

POD-DEİM 2.82𝑒 − 01 1.60𝑒 − 01 15.67 

POD-DMD 3.32𝑒 − 02 1.71𝑒 − 02 288 

5. Conclusion 

For nonlinear partial differential equations, using only POD as a model order reduction technique is not always sufficient 
in terms of computational efficiency. For approximating nonlinearities in a reduced-order model, DEIM is more 
effective, as it directly addresses the reduction of nonlinear terms. DMD, on the other hand, is useful for capturing the 
underlying dynamics and extracting dominant modes of the system, making it more suitable for dynamic analysis and 
prediction. Combining both methods could potentially leverage the strengths of each, with DEIM handling the nonlinear 
terms and DMD uncovering the system’s dynamic behavior. Besides, DMD is faster than DEIM.  
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