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Abstract 

In this paper we consider the optimal control problems governed by the gradient systems 
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where 𝐹(𝑦)  denotes a potential function and ε is the diffusivity. One example of gradient systems are the Schlögl 
equation arising in chemical waves with a quartic potential function F(y). Gradient systems are characterized by energy 

decreasing property 𝐸(𝑦(𝑡)) ≤  𝐸(𝑦(𝑠)), 𝑠 >  𝑡. Numerical integrators that preserve the energy decreasing property in 

the discrete setting are called energy or gradient stable. It is known that the implicit Euler method is first order 
unconditionally energy stable method. The only second order unconditionally energy stable method is the average 
vector field (AVF) method. We discretize the gradients systems by discontinuous Galerkin method in space and by AVF 
integrator in time. We solve optimal control problems for the Schlögl equation with traveling and spiraling waves using 
sparse and 𝐻1 regularized controls . 
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1. Introduction

Gradient systems are a class of dynamical systems that evolve over time to minimize a certain potential, often governed 
by a Lyapunov-like function. These systems play a significant role in various scientific fields, including physics, 
chemistry, biology, and economics, where they model phenomena such as diffusion, phase transitions, and optimization 
processes. The study of gradient systems is crucial for understanding stability, pattern formation, and the dynamics of 
nonequilibrium systems. In particular, the Schlögl equation is one of the prototypical models used to describe 
autocatalytic reactions in chemical systems, capturing essential features such as bistability, instability, and pattern 
formation. 

The Schlögl equation is a system of nonlinear differential equations that models the evolution of a chemical reaction 
network with feedback mechanisms. It has been widely studied due to its rich dynamics, which include the potential for 
oscillatory behavior, bifurcations, and the emergence of spatially heterogeneous states. Given the complexity and 
nonlinearity of the Schlögl system, controlling its dynamics to achieve specific behavior is of great interest in both 
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theoretical and applied contexts. The ability to steer the system to desired states using minimal control efforts is a key 
challenge. 

In this paper, we consider the optimal control problems for gradient system, namely Schlögl equation [1, 2, 3, 5]. For 
gradient systems, the energy decreases along solutions as fast as possible. Schlögl equation describes the auto-catalytic 
chemical reaction mechanism. 

In the following we consider the minimization of an objective function given by 

 

where Ω = (𝑎, 𝑏), 𝜀 > 0. In addition, 𝑢, 𝑦𝐷 ∈ 𝐿2(0, 𝑇; 𝐿2(Ω)), 𝑦0(𝑥) ∈ 𝐿2(Ω) are given source function, desired state and 
initial condition, resp. There can be also box constraints on the control: 𝑢𝑎  ≤  𝑢(𝑥, 𝑡)  ≤  𝑢𝑏 . The nonlinearity 𝑓(𝑦) is 
the differential of the potential function 𝐹(𝑦), i.e., 𝑓(𝑦)  =  𝐹′(𝑦). Here, 𝑦 and 𝑢 are state and control variables, resp. The 
aim is finding a control u to minimize the difference between the state y and the desired state 𝑦𝐷  with 𝑐𝐷 =  1, 𝑐𝑇  =  0 
or to minimize the difference between the final state 𝑦(𝑇) and the desired final state 𝑦𝑇  with 𝑐𝐷 = 0, 𝑐𝑇 = 1. There are 
two approach for solving the above given optimization problem (1)-(2), namely discretize−then−optimize and 
optimize−then−discretize. Here we use the second case, optimize−then−discretize procedure which means that we first 
derive the first order necessary optimality conditions established on the continuous level and then we continue with 
the discretization of the problem. For the optimization, the nonlinear conjugate gradient method equipped with the line 
search algorithm using the strong Wolfe-Powell conditions and approximate Wolfe conditions is used. For the space 
discretization, discontinuous Galerkin finite elements (DG) [6], for the time discretization average vector field (AVF) 
method preserving the energy of the Hamiltonian systems and energy dissipation of the gradient systems are used [4]. 

2. First order optimality conditions 

In order to derive the first order necessary optimality conditions, we first set the Lagrangian function as 

 

Derivative of the Lagrangian 𝐿(𝑦, 𝑢, 𝑝) w.r.t. the adjoint variable 𝑝 gives the state equation (2). 

Derivative of the Lagrangian 𝐿(𝑦, 𝑢, 𝑝) w.r.t. the state variable y gives the following adjoint equation: 

 

The initial condition of this equation is given at the final time T, so it has to be solved backward in time. Lastly, the 

derivative of the Lagrangian 𝐿(𝑦, 𝑢, 𝑝) w.r.t. the control variable 𝑢 leads to the gradient equation: 
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3. Discontinuous Galerkin method 

In this section, semi-discrete form of the first order optimality conditions consisting of state, adjoint and gradient 
equations will be given. As we have pointed out, for the space discretization we use piecewise linear discontinuous finite 
elements [6]. The classical weak formulation of the state equation (2) reads: for fixed control 𝑢, find 𝑦(𝑡)  ∈  𝐻0

1(Ω) s.t. 

 

where (·,·) denotes the usual 𝐿2-inner product over the domain Ω and 𝑎(𝑢, 𝑣) = 𝜀(𝛻𝑢, 𝛻𝑣) is the bilinear form over the 
domain Ω. Let εh be the disjoint partition of the domain Ω with elements {𝐸𝑖}𝑖=1

𝑁  ∈  𝜖ℎ , where 𝑁  is the number of 
elements in the partition. On 𝜖ℎ , set the discrete solution and test function space as 

 

where 𝑃𝑘(𝐸) is the space of polynomials of degree at most k on 𝐸 ∈ 𝜖ℎ. In our problem we choose k = 1. We split the set 

of all edges 𝛤ℎ  into the set 𝛤ℎ
0 of interior edges and the set 𝛤ℎ

𝜕  of boundary edges so that 𝛤ℎ =  𝛤ℎ
0  ∪ 𝛤ℎ

𝜕 . Let 𝐸1
𝑒  and 𝐸2

𝑒  be 
the two elements sharing the common edge 𝑒. Then, since the functions in 𝐷𝑘  are allowed to be discontinuous along the 
interior edges, any scalar function 𝑣 ∈ 𝐷𝑘  has two traces along the edge 𝑒, denoted by 𝑣|_𝐸1

𝑒    and 𝑣|_|_𝐸2
𝑒 . Then the jump 

and average of 𝑣 across the edge e are defined by 

 

where 𝑛𝐸1
 and 𝑛𝐸2

 denote the outward unit normal vectors to the edge 𝑒 from 𝐸1  and 𝐸2 , respectively. Similarly, the 

jump and average terms for a piecewise continuous vector valued function 𝛻𝑦 on the edge 𝑒 are defined by 

 

From now on, for convenient, we omit the subscript notation in the formulations and we write as [·] and {·}. Then, (SIPG) 
DG formulation of the state equation (2) is written as follows: 

 

where the DG bilinear form 𝑎ℎ(𝜀; 𝑦ℎ , 𝑣ℎ) is given by 

 

Here σ >0 is called the penalty parameter and it should be sufficiently large to ensure the stability of the DG 
discretization. Also he denotes the length of the edge e.  
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Hence, the semi-discretized form of the first order optimality conditions (2)-(3)-(4) is written as follows 

 

Now, let us write (7) in matrix-vector form. The semi-discrete solutions of (7) are written using the global basis 
functions of 𝐷𝑘 . For instance, the solution of the state and adjoint equations are of the form 

 

Here, 𝜙𝑖
𝑛, 𝑖 = 1,··· , 𝑁𝑙𝑜𝑐 , 𝑛 = 1,··· , 𝑁, are the basis functions of 𝐷𝑘 , and 𝑁 denotes the number of elements, 𝑁𝑙𝑜𝑐  is the 

local dimension. 𝑦𝑖
𝑛 and 𝑝𝑖

𝑛 are the unknown coefficients of 𝑦 and 𝑝.  

When we substitute (7) into the semi-discretized form (7), we obtain the following semi linear system of ordinary 
differential equations 

 

where 𝑀 and 𝑆 denote mass and stiffness matrices, resp. In a similar way, we can discretize our objective functional as

 

4. Time discretization methods 

Let 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑗 = 𝑇  be the uniform partition of the time interval 𝐼 = [0, 𝑇]  into 𝐽  time-steps [𝑡𝑗−1, 𝑡𝑗],   𝑗 =

1, . . . , 𝐽,with the step size ∆𝑡 =
𝑇

𝐽−1
. Let us denote the approximate coefficients vector 𝒚(𝑡) of (7) at the time 𝑡 = 𝑡𝑗  by 

𝒚𝑗 ,and similarly approximate solution by 𝒚𝑗  ≈ 𝒚ℎ(𝑡𝑗). Then, the fully discrete forms of the semi-discrete state and 

adjoint equations in (7) read as: for all 𝑗 = 1, . . . , 𝐽, find 𝒚𝑗 , 𝒑𝑗 such that with backward Euler 
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with semi-implicit Euler 

 

with average vector field [4] 

 

Except semi-implicit-Euler method, they are solved by Newton method. 

5. Numerical results 

5.1. 1D Schlögl equation (reach to zero state) 

For the 1D Schlögl equation, we consider a gradient system with the nonlinearity 𝐹′(𝑦) = 𝑓(𝑦) =
1

3
𝑦3(𝑥, 𝑡) − 𝑦(𝑥, 𝑡) 

where 𝑦 ∈ {−1, 1} are stable fixed points whereas 𝑦 = 0 is the unstable fixed point. We use the regularization parameter 
𝜆 = 10−6. We consider as space time domain 𝑥 ∈ [0, 20] with Δ𝑥 = 0.2 and 𝑡 ∈ [0, 5] with Δ𝑡 = 0.05. Our aim is to reach 
zero state at the final time 𝑡 = 5 through the parameters 𝑐𝑄 = 0, 𝑐𝑇 = 1. The initial condition is taken as 

 

Table 1 Result for the ID schlogl model (control in the whole domain) 

Method Objective Value #NCG it. # Line Search # Newton it CPU Time 

BE 4.06e-05 23 1.5 1.0 39.1 

AVF 4.46e-05 23 1.4 1.0 80.2 

SIE 3.83e-05 23 1.4 - 31.5 
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Figure 1 Energies of the states though the time integrators backword Euler, average vector field and semi-implicit Euler 
time integrators from left or right for the ID Schlögl model (reach to zero state) 

 

 

Figure 2 Optimal control profiles (top row), optimal state profile (middle row) and optimal state at the final time 
(bottom row) solved by backword Euler, average vector field and semi-implicit Euler time integrators from left or 

right for the ID Schlögl model (reach to zero state) 
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5.2. 1D Schlögl equation (with desired state) 

We consider again the 1D Schlögl equation with the regularization parameter 𝜆 = 10−6, and space-time domain 𝑥 ∈
[0, 20] with Δ𝑥 = 0.2 and 𝑡 ∈ [0, 5] with Δ𝑡 = 0.05. Our aim is now to impose a desired state through the parameters 
𝑐𝑄 = 1, 𝑐𝑇 = 0 and with the initial condition 

 

The desired state is chosen as the natural solution 𝑢∗(solution of the uncontrolled model) until the time 𝑡 = 2.5 and zero 
after 

 

Table 2 Result for the ID Schlögl model (control in the whole domain) 

Method Objective Value #NCG it. # Line Search # Newton it CPU Time 

BE 3.55e-01 200 2.3 1.0 738.7 

AVF 3.87e-01 200 2.3 1.0 1717.4 

SIE 3.76e-01 200 2.5 - 661.5 

 

 

Figure 3 Energies of the states though the time integrators backword Euler, average vector field and semi-implicit 
Euler from left or right for the ID Schlögl model (with desired state) 
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Figure 4 Optimal control profiles ( top row), optimal state profile (bottom row) solved by backword Euler , average 
vector field and semi-implicit Euler time integrators from left or right for the ID Schlögl model (with desired state) 

5.3. 2D Schlögl equation (reach to zero state) 

For the 2D Schlögl equation, we consider a gradient system the nonlinearity 𝐹′(𝑦) = 𝑓(𝑦) = 𝑦(𝑦 − 0.25)(𝑦 + 1). We 
use the regularization parameter 𝜆 = 10−10 . We consider as space-time domain (𝑥, 𝑡) = [0, 70]2 × [0, 20]  with the 

spatial and temporal mesh sizes Δ𝑥1 = Δ𝑥2 =
35

8
 and Δ𝑡 = 0.5, resp. Our aim is to reach zero state at the final time 𝑇 =

20 through the parameters 𝑐𝑄 = 0, 𝑐𝑇 = 1 and the box constraint −1 ≤ 𝑢(𝑥, 𝑡) ≤ 1. The initial condition is taken as  

 

Table 3 Result for the 2D Schlögl model (reach to zero state) 

Method Objective Value #NCG it. # Line Search # Newton it CPU Time 

BE 9.26e-06 22 2.5 1.0 66.1 

AVF 5.64e-06 55 8.0 1.0 843.9 

SIE 5.88e-06 31 5.3 - 134.7 
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Figure 5 Energies of the states though the time integrators backword Euler, average vector field and semi-implicit 
Euler time integrators from left or right for the 2D Schlögl model (reach to zero state) 

 

 

Figure 6 Initial state (top row) optimal control (middle row) and optimal state (bottom row) at the final time T=20 
solved by backword Euler, average vector field and semi-implicit Euler time integrators from left or right for the 2D 

Schlögl model (reach to zero state) 
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6. Conclusion 

In this study, we have successfully applied optimal control theory to the Schlögl equation, demonstrating how control 
inputs can be used to stabilize unstable equilibria and guide the system toward desired states. By deriving the necessary 
conditions for optimality and using numerical simulations, we showed that effective control strategies can significantly 
reduce control effort while maintaining the system's dynamics. Additionally, model order reduction techniques were 
employed to further decrease the computational cost, making the control problem more efficient and scalable. Our 
findings highlight the potential of optimal control for managing complex, nonlinear gradient systems and offer insights 
into its practical applications in fields such as chemical engineering and biochemistry. Future work will focus on 
addressing computational challenges and extending these techniques to more complex systems, further enhancing their 
real-world applicability. 
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