Nanoparticles loaded in consumable polymeric oral films: A smart dosage form design for oral administration

Suhani Sinha *

Department of Pharmacy, School of Medical and Allied Sciences, G D Goenka University, Gurugram-122103, India.

Publication history: Received on 24 May 2020; revised on 04 July 2020; accepted on 06 July 2020

Abstract

This review article provides an overview of nanoparticles in polymeric oral thin films as smart, non-parenteral and non-invasive route of drug administration to achieve patient compliance for varied therapeutic applications. The increasing research trend towards developing biocompatible and biodegradable nanoparticles as sustained release mucoadhesive patches with potential to improve pharmacokinetics and bioavailability significantly has given impetus to drug repurposing of existing molecules to new boundaries. Most widely used polymers to prepare nanoparticles include alginate and chitosan as they are biodegradable, biocompatible, demonstrated low toxicity in in vitro and in vivo models and has already been approved for dietary use and wound dressing applications. Chitosan particularly has been used as a carrier for polymeric nanoparticles for drug delivery through various routes of administration. Nanoparticles (NP) prepared using chitosan and chitosan derivatives typically possess a positive surface charge and has mucoadhesive properties such that they can adhere to mucus membranes and release the drug in a sustained release manner. They have various applications for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections through non-parenteral route of drug delivery.

Keywords: Oral film; Nanoparticles; Nanopharmaceutical; Nanodrugs; Chitosan; FDA approved; Bioavailability; Permeability; Dissolution.

1. Introduction

Majority of leads identified through the drug discovery process as potential new candidates capable of binding to specific target receptors to produce desired pharmacological effect has limited aqueous solubility. Nanoparticles by the virtue of their submicron particle size in the range of 10 to 1,000 nm and distinct physicochemical properties, has the ability to overcome many formulation and drug delivery issues associated with poor water solubility and lipophilicity. Preparation of nanoparticles is typically of two types either top to down approach by size reduction using conventional size reduction equipment such as media mill and high-pressure homogenizers or bottom to top formulation approaches such as precipitation, emulsion-solvent evaporation, solvent diffusion and microemulsion techniques. The critical process and formulation parameters like stirring speed, polymer and surfactant concentration can be successfully optimized to achieve desired quality attributes like particle size, zeta potential and entrapment efficiency. These parameters can further be implemented to scale-up the manufacturing process. Maintaining the stability in solution as well as in solid state without aggregation are the key factors for the successful production and scale-up of nanosuspensions. Hence the formulation of nanosuspensions as oral films stabilize them significantly by preventing aggregation while also enabling uniform resuspension upon solvation. Due to the considerable enhancement in bioavailability, adaptability for surface modification and mucoadhesion, drug targeting can significantly expand the scope of this formulation strategy. Oral film delivery of nanosuspension with receptor mediated endocytosis has the
promising ability to resolve most permeability limited absorption and hepatic first-pass metabolism related issues adversely affecting bioavailability.

2. Current Trends in Formulation development and Research of Nanopharmaceutical Dosage Forms

Nanopharmaceutical formulations can be classified into six types depending upon their approved clinical use like: liposome nanoparticles, polymeric nanoparticles, micelle nanoparticles, nanocrystal nanoparticles, inorganic nanoparticles and protein nanoparticles. Details of the products developed and marketed in these categories have been tabulated in Table 1.

Table FDA Approved Nanodrugs available for clinical use

<table>
<thead>
<tr>
<th>Generic name</th>
<th>Formulation</th>
<th>Trade Name</th>
<th>Manufacturer</th>
<th>Therapeutic Indications and benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doxorubicin HCl</td>
<td>Liposome nanoparticles (injection)</td>
<td>Doxil</td>
<td>Janssen Pharmaceuticals</td>
<td>Kaposi's sarcoma, ovarian cancer, multiple myeloma (Increased delivery to disease site, decreased systemic toxicity of free drug)</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>Liposomal nanoparticles</td>
<td>AmBIsome</td>
<td>Gilead Sciences</td>
<td>Fungal/protozoal infections (decreased nephrotoxicity)</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>Liposomal nanoparticles</td>
<td>Abelcet</td>
<td>Sigma-Tau</td>
<td>Serious fungal infections (decreased toxicity)</td>
</tr>
<tr>
<td>Poractant alfa</td>
<td>Liposome nanoparticles</td>
<td>Curosurf</td>
<td>Chiesi USA</td>
<td>Respiratory distress syndrome (Increased delivery with smaller volume, decreased toxicity)</td>
</tr>
<tr>
<td>Triamcinolone acetonide ER injectable suspension</td>
<td>Polymeric nanoparticles</td>
<td>Zilretta</td>
<td>Flexion Therapeutics</td>
<td>Osteoarthritis knee pain (extended release)</td>
</tr>
<tr>
<td>Anthemophilic factor (recombinant), pegylated</td>
<td>Polymeric nanoparticles</td>
<td>Adynovate</td>
<td>Shire</td>
<td>Hemophilia (Greater protein stability, longer half-life)</td>
</tr>
<tr>
<td>Fenofibrate</td>
<td>Nanoparticle micelle</td>
<td>Tricor</td>
<td>AbbVie</td>
<td>Hyperlipidemia (Greater bioavailability simplifies administration)</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>Albumin bound nanoparticles (iv injection)</td>
<td>Abraxane</td>
<td>American Biosciences (Blauvelt, New York)</td>
<td>Metastatic breast cancer</td>
</tr>
<tr>
<td>Sirolimus</td>
<td>Nanocrystal particles (oral)</td>
<td>Rapamune</td>
<td>Wyeth Pharmaceuticals</td>
<td>Immunosuppressant in kidney transplant patients (greater bioavailability)</td>
</tr>
<tr>
<td>Aprepitant MK869</td>
<td>Nanocrystal particles (oral)</td>
<td>Emend</td>
<td>Merck/Elan (Whitehouse Station, New Jersey)</td>
<td>For chemotherapy patients for delayed nausea and vomiting (greater absorption and bioavailability)</td>
</tr>
<tr>
<td>Iron dextran</td>
<td>Inorganic nanoparticles (injection)</td>
<td>Dexferrum</td>
<td>(American Regent)</td>
<td>Iron deficiency in CKD (increased dose)</td>
</tr>
<tr>
<td>Sodium ferric gluconate complex in sucrose</td>
<td>Inorganic nanoparticles (injection)</td>
<td>Ferrlecit</td>
<td>Sanofi-Aventis</td>
<td>Iron deficiency in CKD (increased dose)</td>
</tr>
<tr>
<td>Albumin-bound paclitaxel</td>
<td>Protein nanoparticles</td>
<td>Abraxane</td>
<td>Celgene</td>
<td>Breast cancer, NSCLC, pancreatic cancer (greater solubility, increased delivery to tumour)</td>
</tr>
<tr>
<td>Denileukin diftitox</td>
<td>Protein nanoparticles</td>
<td>Ontak</td>
<td>Eisai</td>
<td>Cutaneous T-cell lymphoma (Targeted T-cell specificity, lysosomal escape)</td>
</tr>
</tbody>
</table>
The other description used in research are nanotubes, nanofibers and magnetic nano pharmaceuticals. These nanopharmaceutical dosage forms are able to accommodate the active therapeutic moiety and bio-molecules such as enzymes, vaccines, recombinant proteins, peptides, and nucleic acid for their delivery. These dosage systems have ability to improve specific targeting either passively or actively, to a particular tissue or organ of the body where they are needed. [1]

A number of potential drug candidates identified in the last few decades have excellent target receptor binding, but due to their large molecular weight and high log P values, these candidates have low aqueous solubility and thus restricts further development as a successful dosage form. It is a well-established fact that large surface area offered by particle size reduction can significantly enhance dissolution rate and bioavailability according to classical Noyes-Whitney equation. Pharmaceutical nanosuspensions of drugs are nanosized, heterogeneous aqueous dispersions of insoluble drug particles stabilized by surfactants. Accommodating large drug amount with minimum dose volume has additional benefits in parenteral and ophthalmic drug delivery system owing to the minimization of excessive use of harmful non-aqueous solvents and extreme pH. Other advantages include increased stability, sustained release of drug, increased efficacy through tissue targeting, minimum first pass metabolism and deep lung deposition. The method of preparation, dosage forms, components and applications of nanosuspensions in drug delivery systems are schematically represented in Fig. 1. Despite the intricacies associated manufacturing, selecting appropriate unit operation, equipment and process optimization can counteract these complexities to larger extent.

Chitosan is the second most abundant next to cellulose, naturally occurring amino polysaccharide, derived as a deacetylated form of chitin. Being nontoxic, biocompatible, antibacterial and biodegradable they have significant use in research towards biomedical and pharmaceutical applications, such as drug delivery, tissue engineering, wound-healing dressing etc [2]. They have various applications for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections through non-parenteral route of drug delivery [3] The primary amine group in chitosan are responsible for its cationic nature, muco-adhesion, in situ gelation, antimicrobial, permeation enhancement etc. This review article discusses the various forms of polymers as oral film matrix and drug delivery device incorporating drug as chitosan nanoparticles and reports the vast literature available in drug delivery applications.

Yin et al fabricated a novel smart drug delivery system consisting of protein and chitosan nanoparticles in bilaminated films composed of the mucoadhesive chitosan–ethylenediaminetetraacetic acid hydrogel layer and the hydrophobic ethyl cellulose layer. Nanoparticles in film was characterized by electron microscopy and fluorescence microscopy, and the results showed the solid, spherical nanoparticles dispersed evenly in the porous structures of films. The properties of nanoparticles and films were investigated. The mucoadhesive force and the toxicity of NP-Film were also evaluated. It was observed that the nanoparticles could reversibly open the tight junction of the intestine and inhibit trypsin activity. The drug delivery system possessed high mucoadhesive force and low intestinal toxicity. Therefore, the NP-Film would be a promising delivery carrier for protein drugs via oral administration [4].

Pintadoa et al prepared alginate beads of bioactive molecules in guar-gum films as a single and more effective delivery system to study oral delivery of bioactive molecules. He performed a response surface method to obtain optimal formulations of alginate beads to be incorporated into guar gum oral films as combined buccal and oral delivery systems for caffeine delivery. The formulation was further characterized regarding physicochemical properties, drug release, cell viability and buccal permeability. Beads had an average size of 3.37 ± 6.36 μm. Film thickness was set to 62 μm. Scanning electron microscopy revealed that beads were evenly distributed onto the film matrix. Evaluation of Fourier-transform infrared spectra did not indicate the formation of new covalent bonds between the matrix of guar-gum films, alginate beads and caffeine. MTT assay, performed on human buccal carcinoma TR146 cell line, revealed that alginate beads incorporated in guar-gum did not compromise cell viability after 12 h of exposure. As demonstrated by in vitro permeability assay using TR146 human buccal carcinoma cell lines, combination of guar-gum films and alginate beads exhibited a slower drug release, lower apparent permeability (1.15E-05 ± 3.50E-06) than for caffeine solution (2.68E-05 ± 7.30E-06), guar-gum film (3.12E-05 ± 4.70E-06) or alginate beads (2.01E-05 ± 3.90E-06). Thus it was concluded that the conjugation of alginate beads within an orodispersible film matrix is an effective controlled release buccal delivery system with enhanced mucoadhesion and potential to improve in vivo bioavailability of carried drugs [5].
Although several niche small molecule products have been approved as simple sprays, tablets and oral films, the concept of existing technologies cannot be applied to big molecules like biologics. Buccal delivery of insulin has reached clinical trials with two approaches; one being oromucosal spray of the peptide with permeation enhancers, and other being insulin embedded gold nanoparticles in a dissolvable film. However, neither of these approaches have led to FDA approvals likely due to submaximal peptide loading in the dosage form, and to wide intra-subject variability in pharmacokinetics and pharmacodynamics. However, it is likely that 3D printed films with lower molecular weight stable biotech payloads including lipophilic glucagon-like 1 (GLP-1) agonists and macrocytes with long half-lives will generate greater efficacy than was achieved to date for insulin [6].

In yet another study, Bao-de et al prepared a novel orodispersible film (ODF) containing Herpetrine, (a novel and potent antiviral agent with poor water solubility extracted from *Herpetospermum caudigerum*) nanoparticles with the goal of transforming drug nanosuspensions into a solid dosage form with enhanced oral bioavailability of drugs with poor water solubility. Nanosuspensions were prepared by high pressure homogenization and then transformed into ODF containing drug nanoparticles by mixing with hydroxypropyl methylcellulose solution containing microcrystalline cellulose, low substituted hydroxypropyl cellulose and PEG-400 followed by film casting and drying. They observed that the uniformity of dosage units of the preparation was within acceptable limits. The disintegration time observed was within 30 s with reconstituted nanosuspensions particle size of 280 ± 11 nm, which was similar to that of prepared drug nanosuspensions, indicating a good redispersibility of the fast dissolving film. X-ray diffraction showed that HPE in the orodispersible film was in the amorphous state. Increased *in vitro* dissolution was observed for the drug. In vivo pharmacokinetic study in rats, compared to HPE coarse suspensions, the ODF containing HPE nanoparticles exhibited significant increase in AUC$_{0-24h}$, C_{max} and decrease in T_{max}, MRT. The result concluded that the orodispersible films
containing drug nanoparticles have a potential opportunity to stabilize the nanoparticles and prevent agglomeration transforming drug nanosuspensions into a solid dosage form by simple process integration as well as improve bioavailability of poorly water-soluble drugs [7] [8]

Mucoadhesive films containing curcumin-loaded nanoparticles were developed, aiming to prolong the residence time of the dosage form in the oral cavity and to increase drug absorption through the buccal mucosa. Films were prepared by the casting method after incorporation of curcumin-loaded chitosan-coated polycaprolactone nanoparticles into plasticized chitosan solutions. Different molar masses of mucoadhesive polysaccharide chitosan and plasticizer glycerol were optimized during formulation development. Films obtained using medium and high molar mass chitosan were found to be homogeneous and flexible. Curcumin-loaded nanoparticles were uniformly distributed on the film surface, as evidenced by atomic force microscopy and high-resolution field-emission gun scanning electron microscopy images. Films displayed swelling of around 80% in simulated saliva and exhibited a prolonged-controlled delivery of curcumin in vitro. These results indicate that the mucoadhesive films containing nanoparticles offer a promising approach for buccal delivery of curcumin, which may be particularly useful in the treatment of periodontal diseases that require a sustained drug delivery [9].

Lercanidipine, a vasoselective dihydropyridine calcium antagonist, used for the treatment of hypertension and angina pectoris suffers from food effect, poor solubility, low permeability and considerable first pass metabolism, resulting in highly variable and low bioavailability of 10%. Nanoparticles of lercanidipine were incorporated in fast dissolving oral films (FDO) via preparation of nanosuspension by evaporative antisolvent precipitation method. Prepared nanosuspensions were incorporated in films without lyophilizing or spray drying. PEG 400 and TPGS 1000 were selected as stabilizers further for incorporation in film. Physicochemical and mechanical properties of the optimized films were observed to be within acceptance criteria. SEM images as well as FTIR chemical images of oral films showed uniform distribution of nanoparticles in polymeric matrix. The DSC and XRD results proved the poorly crystalline nature of lercanidipine. It was observed that since thermal processing of film induces crystallinity in hypromellose, amorphous drug nanoparticles were embedded in semicrystalline polymeric matrix. Superior dissolution and permeability properties of nanoparticles were confirmed during in vitro dissolution studies and about 4.5-folds higher ex vivo drug permeation was observed from formulation through porcine buccal mucosa. This may give the clue for enhancement of bioavailability in vivo via improving orotransmucosal absorption [10].

Fenofibrate nanocrystal was prepared by wet media milling and formulated into oral strip-films. Mechanical properties, redispersion study, and solid-state characterization results revealed that reduction of drug crystal size at nanoscale and incorporation into oral soluble films does not affect the solid-state properties of the drug. In vitro dissolution kinetics showed enhanced dissolution rate which could be easily manipulated by changing the thickness of the film. In vivo pharmacokinetics in rabbits showed a significant difference in the pharmacokinetics parameter (1.4-fold increase bioavailability) of fenofibrate nanocrystal loaded oral soluble films as compared to the marketed formulation Tricor. This approach of drug nanocrystallization and incorporation into soluble polymeric films have significant applications in cost-effective tools for bioavailability enhancement of fenofibrate [11].

Midazolam nanosuspensions were prepared using the ultrasonic method and then incorporated in the hydroxypropyl methyl cellulose (HPMC)/pullulan polymeric matrix with other excipients like glycerol and cellulose nanofiber as a softener and a compatibilizer, respectively. The prepared films were evaluated for mechanical properties, morphology study, disintegration time, and dissolution time. SEM images of fast dissolving films showed uniform distribution of spherical nanoparticles in the polymeric matrix. A film with 36% HPMC, 64% pullulan, and 21% glycerine was selected as the optimum formulation by the Design Expert 7 software. The optimum film was stable for three months. The pharmacokinetic parameters of midazolam oral film in comparison to coarse midazolam suspension exhibited significant increase in AUC, Cmax, and a significant decrease in Tmax. The overall results showed enhanced in vivo orotransmucosal absorption of poorly water-soluble drugs via the insertion of drug nanosuspension in buccal films [12]. These fast dissolving films containing midazolam deliver drugs rapidly to the blood circulatory system and have potential advantages in control of severe neuropathic attacks in children.

In another study Vaishali et al stabilized optimized nanosuspensions of glimepiride by solidification in a novel oral thin film formulation. Nanosuspensions were characterized for particle size, zeta potential as well as in vitro dissolution profile. Prepared film formulations were evaluated for physicochemical parameters like folding endurance, disintegration time, tensile strength, in vitro drug release, in vivo bioavailability and stability. It was observed that the mean particle size of the nanoparticles in oral films was found to be 57.2 nm. In vivo bioavailability studies revealed high plasma drug concentrations (Cmax) for nanosuspension of glimepiride loaded oral films i.e. 4900 ng/ml as compared to marketed oral formulation (Cmax-2900 ng/ml). Results of the stability studies indicated that nanosize of
the particles was retained even after 3 months of the study. They concluded that oral thin film formulation has a potential for stabilization of nanosuspensions [13].

Lutein is widely used as diet supplement for prevention of age-related macular degeneration. However, its application has been hampered due to its poor solubility and low oral bioavailability. A study aimed to develop and evaluate the formulation of oral fast-dissolving film containing lutein nanocrystals for enhanced bioavailability was carried out by Chen Liu et al. Lutein nanocrystals were prepared by anti-solvent precipitation method and then encapsulated into the films by solvent casting method. The formulation of oral films was optimized by Box-Behnken Design thereby using HPMC 2.05% (w/v), PEG 400 1.03% (w/v) and Cremophor EL 0.43% (w/v). The obtained films exhibited uniform thickness of 35.64 ± 1.64 μm and drug content of 0.230 ± 0.003 mg/cm² and disintegrated rapidly in 29 ± 8 s. The nanocrystal-loaded films with reconstituted particle size of 377.9 nm showed better folding endurance and faster release rate in vitro than the conventional oral films with raw lutein. The microscope images, thermograms, and diffractograms indicated that lutein nanocrystalline were highly dispersed into the films. After administrated to rats, t max was decreased from 3 h for oral solution formulation to less than 0.8 h for oral film formulations, and Cmax increased from 150 ng/mL for solution to 350 ng/mL for conventional oral films or 830 ng/mL for nanocrystal in oral films. The AUC 0-24h of conventional or nanocrystal oral film was 1.37 or 2.08-fold higher than that of the oral solution, respectively. These results suggested that drug nanocrystal-loaded oral film can be applied as a promising approach for enhanced bioavailability of poor soluble drugs like lutein [14].

Another study aimed at developing fast dissolving oral films containing nanoparticles of buspirone hydrochloride was prepared. The concept of this formulation provides the drug delivery system with enhanced bioavailability and sustained release action. These formulations deliver the drug through oral mucosa and bypass the first pass metabolism thereby increase bioavailability. Nanoparticles were prepared by nanoprecipitation method and films were prepared by a solvent casting method. Both the formulations were optimized employing central composite design. Nanoparticles were evaluated for particle size, zeta potential & entrapment efficiency, which were found to be 189.23 ± 0.95nm, −21.56 ± 0.56mV and 68.28 ± 3.69%, respectively. Morphological characters were identified by scanning electron microscopy, transmission electron microscopy and atomic force microscopy. Solid state characterization of the drug in the formulation was evaluated by X-ray diffraction. Films were evaluated for their disintegration time, weight variation, thickness, tensile strength, and surface pH. The results concluded that the nanoparticles of buspirone incorporated into films had good physicomechanical properties and optimum stability. They exhibited an initial burst release followed by sustained drug release as visualized in chronotherapy [15].

Quing Song et al prepared and evaluated fast dissolving sublingual films containing meloxicam nanocrystals. Nanocrystals were utilized to allow for improved dissolution of the drug, whereas the films were used to shorten the onset of action via the sublingual route. Meloxicam nanocrystals were prepared by nanoprecipitation based on acid-base neutralization method and then encapsulated into the films by solvent casting method. The obtained fast dissolving films exhibited uniform thickness of 82 ± 8 μm and drug content of 7.38 ± 0.011 mg/film (4 cm²) and disintegrated rapidly in 23.08 ± 1.76 s with reconstituted particle size of 196.4 ± 6.3 nm showed faster dissolution rate in vitro than the meloxicam coarse suspension-based films. The SEM images and XRD indicated that meloxicam nanocrystals were highly dispersed into the films. After administrated to rats, T max of meloxicam was significantly shortened following fast dissolving film containing lutein nanocrystals for enhanced bioavailability wa...
3. Toxicity Concerns with Nanopharmaceuticals

Along with endless opportunities in the field of pharmaceutical formulation, drug delivery, diagnostic and treatment of various diseases, the safety and toxicity parameters of nano based dosage formulations is a challenge for drug development and commercialization [18]. Various semiconductive metals like colloidal gold and iron oxide crystals formulated in nano form have also demonstrated toxicity. Being submicron sized particles, they easily penetrate the skin, lungs and blood brain barrier causing toxicity. Therefore, more extensive preclinical study should be carried out to fully investigate any toxicity associated with these formulations which is a matter of concern to pharmaceutical scientists.

4. Future Scope of Nanopharmaceuticals

In future major share of pharmaceutical and biopharmaceutical research and commercialization shall be based using this technology of loading nanoparticles in oral films. Nanoscale formulation design and multilayer or single layer 3D printed oral film pharmaceutical dosage prepared using simple process integration without using expensive operations like lyophilization or freeze drying will be preferred choice in research to sustain the growth and market share. According to a new report published by vision gain forecasts the world market for nano pharmaceuticals has a potential to approach $130 billion. This is due to the increasing demand of nanopharmaceutical formulations for enhanced safety and efficacy in the pharmaceutical and biopharmaceutical companies.

5. Conclusion

A summary of research works done on nanoformulations in oral films reveal that this technology enables conversion of poorly soluble and less bioavailable drugs into promising novel drug delivery systems with enhanced stability circumventing the first pass metabolism making it more bioavailable, while also increasing the product lifecycle. Formulation optimization with different biocompatible polymers and different molar concentrations demands a quality by design approach for a better understanding of the influence of different independent factors like polymer concentration and unit operations on the critical quality attributes of nanoparticles like particle size, zeta potential, agglomeration, drug loading and mechanisms of biological interactions. A simple process integration of nanoparticles in suspension with solvent casting technology to prepare oral films is economical with less environmental burden. In future, nano pharmaceuticals or nanoparticles in film will greatly influence healthcare as they have ability to shorten the time to market for active biologics, extend the market exclusivity of proprietary chemical drugs and create additional revenue system. Future scope is to develop nanoparticles in films for proteins and peptides, diagnostic kits, vaccines, site specific targeting of existing chemical entities and chronotherapy. One formidable challenge includes potential toxicity concern of nanoparticles as they have a tendency to accumulate in specific organs like lungs and brain. This adversity could be modified as opportunity to selectively target the drug molecules to these organs. Another challenge is the regulatory guidelines for the product registration including the manufacture and conduct of pre-clinical studies, which are not adequately addressed. A few nano-formulations in the market approved by the FDA have paved the way for further research using this tool for drug design. However, much deliberation is needed to turn the concept of nanoparticle technology into realistic application.

Compliance with ethical standards

Acknowledgments

The author is sincerely grateful to G.D.Goenka University for supporting this research work.

Disclosure of conflict of interest

The author declare that there is no conflict of interest.

References

How to cite this article