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Abstract 

Cancer has been one among the main threats to the lives of citizenry for hundreds of years. Traditional drug therapy 
has certain defects such as poor targeting, easy degradation, high side effects, etc. Therefore, to enhance the treatment 
efficiency of anticancer agents, there is need of developing new drug delivery systems.  Black phosphorus is a member 
of the 2D family, and it possess the potential to construct drug delivery system by virtue of its photothermal therapy, 
photodynamic therapy, and biodegradable properties. Due to their special structure BP are considered to be the best 
platform for drug delivery. They have shown large potential as near-infrared photothermal therapy agents and drug 
delivery systems for cancer therapy. The present review covered advances in BP- based drug delivery system along with 
its advantages and applications in cancer therapy. 
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1. Introduction

Cancer is one of the world’s deadliest diseases. Up till now, huge amounts of, financial and human resources are invested 
for tumor diagnosis. Various medical imaging technologies, like medical resonance imaging (MRI), ultrasound, and 
computerized tomography are successfully applied in clinical practice, for various discoveries, and diagnosis of tumors 
[1-5]. However, due to the variability and complexity of tumor cells, treatment especially of malignant tumors, still faces 
multiple significant challenges. Current clinical therapies which combat cancer primarily involve surgery, 
chemotherapy, and radiotherapy (RT). But surgery has the disadvantage of incomplete clearance of tumor cells, and 
therefore the low efficiency of chemotherapy and side effects of radiotherapy limit their applications.  

Recent tumor treatments include photo thermal therapy (PTT), photodynamic therapy (PDT), and gene therapy (GT), 
but these are still within the experimental stages [6].Recently, 2D materials like graphene oxide (GO), black phosphorus 
(BP), molybdenum disulfide are being extensively studied to be used in cancer therapy [7-10]. BP especially is an 
emerging member within the 2D mono-elemental family, and in recent years, its high mobility, adjustable bandgap, and 
powerful optical absorption have attracted attention and led to studies in numerous fields, like optical sensing, 
photodetectors, pohotocatalysts cancer therapy etc [11-13].  

It is biodegradable in nature and thus it isappropriate to be used as abiomaterial. Indeed, these are certain advantages 
of BP over other 2D materials in developing drug delivery system for cancer therapy [14-16]. Phosphorus may be a vital 
element for living organisms and constitutes ≈1% of the human body's total weight. BP degrades into harmless 
phosphate in physiological environments, giving it high biocompatibility and low cytotoxicity compared with other 2D 
materials [17]. BP's degradability in physiological environments prevents it from accumulating in vivo, making it a 
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highly biocompatible material. With its broad spectrum of absorption and excellent photothermal conversion efficiency, 
BP nanomaterials have tremendous potential as applications within the biomedical field [18]. 

BP is proven to be an efficient PTT agent due to its high near-infrared (NIR) photothermal conversion efficiency [19]. 
within the same year, exfoliated BP was shown to be an efficient photosensitizer (PS) for the generation of singlet 
oxygen (SO), with a high quantum yield of about 0.91, making it attractive to be used in PDT [20]. Given BP’s good 
biocompatibility and excellent PTT and PDT capabilities, BP nanomaterials have attracted enormous attention in 
biomedical applications, and the developments have multiplied in recent years [21-24]. additionally , the massive area 
of BP and its fold structure end in large numbers of anchor points for guest therapeutic agents like anticancer drugs, 
pointing to its eligibility to be used in drug delivery systems. BP offers high drug loading capacity for drugs or other 
agents due to its high specific area [25].  

BP nanosheets (BPNs) loaded with doxorubicin (DOX) were the primary BP-based DDS for synergistic 
PDT/PTT/chemotherapy to treat cancer, reported in 2017 [26]. Some nanoparticles (NPs) and upconversion 
nanoparticles (UCNP) have also been successfully constructed for BP-based DDSs [27-31]. Such rapid development of 
novel therapies should cause the enrichment of monomodal cancer therapies like PDT, PTT, and GT, or to improvements 
in multimodal therapies [32-37]. Multifunctional DDSs which will be used with surface-enhanced Raman scattering 
(SERS), MRI, or polyethyleneimine (PEI) imaging also represents the further progress in drug delivery targeting and 
tracking [38]. 

2. Construction of BP based DDS 

BP holds significant promise to be used in DDSs due to its high specific surface-to-volume ratio, photosensitivity, broad 
light absorption, excellent biocompatibility, and high biodegradability. The main categories of BP platforms are 
classified in four types: bare BPNs, modified BPNs, BPQDs, and BPHs, etc (Figure 1). Using BP as an efficient carrier, 
many varieties of DDSs are developed by loading drugs that include common clinical anticancer drugs (such as, DOX, 
PTX, and BTZ), small interfering RNA (siRNA), inorganic components (e.g., Au, Fe3O4, Pt, and UCNP), and others. These 
BP-based DDSs fight cancer in different ways, with some showing a single anticancer effect, while others combine 
multiple features, such as imaging and biodetection [39]. 

 

Figure 1 Construction of BP-Based DDS [1]. 

3. Preparation of black phosphorus nanosheets 

The BPNSs were prepared by using a simple liquid exfoliation technique (Figure 2). Particularly, 20mg of the BP 
powder was dispersed in 50mL of saturated caustic soda solution of N-methyl-2-pyrrolidone (NMP). Then the mixture 
solution was sonicated in ice bath for 6 hr. The resulting brown suspension was centrifuged at 4000 rpm for 8 min to 
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remove the residual unexfoliated particles and therefore the supernatant was collected for further use. Before use, the 
BPNSs were spun down at 10000 rpm for five min to get rid of NMP [40]. Characteristics of Black phosphorus 
nanosheets and modified Black phosphorus nanosheeets is given in Table 1. 

 

Figure 2 Construction of Black Phosphorus Nanosheets [40].   

Table 1 Characteristics of Black Phosphorus Nanosheets [41-42]. 

SN Platform Coating Bonding 
Ways 

Payloads Tumour 
Cells 

Remarks 

1 Black 
Phosphorus 
Nanosheet 

None Electrostatic 
interaction 

Doxorubicin 4T1 
tumor 
cells  

It can be loaded with 
small, positively 
charged drugs via 
electostratic 
interactions.  

2 Modified Black 
Phosphorus 
Nanosheet 

Polyethylene 
glycolamine 

Electrostatic 
interaction 

Upconversion 
nanoparticles 

Hela cells 
& U14 
cells 

It can exhibit good 
biocompatibility and 
biodegradability. 

3.1. Bare BPNSs platform 

BPNSs have become the most popular 2D materials and are widely used as a substrate in drug delivery. Due to their 
negative charge and corrugated surface structure, bare BPNSs can easily be loaded with small, positively charged drugs 
via electrostatic interaction between the support and the drug with BPNSs as drug carrier, Traditional anticancer drugs 
achieve higher efficiency in chemotherapy, demonstrating the potential of BPNSs as a drug delivery substrate. As a 
result, DDSs supported BPNSs have gradually been extended to the sector of GT [43].  

Additionally, to drugs with positive charges, ones that are neutral or negatively charged can also be loaded onto BPNSs 
after the drugs are electrically modified. This versatility makes BPNSs more attractive than other substrates for 
developing DDSs. Various of the methods that effectively immobilize neutral or negative drugs onto BPNSs, the polymer 
coating strategy is the best [44]. Chemical bonds like as covalent bonds, coordinate bonds, π-bonding, and then have 
also been adopted to construct BPNSs-based DDSs. As an example, Zhao et al. prepared NB@BPs employing a method 
that involved combining Nile blue (NB) dye with BPNSs via diazonium chemistry [45]. 

3.2. Modified BPNSs platform 

Bare BPNSs seem promising for drug delivery, challenges remain such as  

 Susceptibility to aggregation and settling in world use. 

 Poor physiological stability and easy degradation within the presence of oxygen and water. 

 Low drug loading efficiency via electrostatic interaction; and 

 Lack of functional groups on their surfaces. 
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Among the various modifications addressing one or more of those problems, the most BP strategy has electrostatic 
interaction between BPNSs and modified components and therefore the second approach uses a reaction to conjugate 
BPNSs. To date, polyethylene glycol (PEG), PEI, Polydopamine (PDA), Poly (2-ethyl-2-oxazoline) (PEOz), and human 
albumin (HAS) are common BPNSs modification materials (Figure 3). PEG–NH2 has excellent biocompatibility and has 
been widely utilized in the sector of biomedicine. BPNSs modified with PEG–NH2 via electrostatic adsorption also 
exhibited good biocompatibility and physiological stability, with almost no aggregation or degradation, as observed 
through UV–vis absorption spectra and therefore the Tyndall effect [46-49].  

 

Figure 3 PEGylated BP the ranostic delivery platform [49]. 

PDA may be a well-known biomimetic polymer with high adhesive capacity that’s easily synthesized by the self-
polymerization of dopamine in an alkaline environment. In BP-based DDSs, PDA coating also confers enhanced stability 
and photothermal effects (Figure 4) [50]. 

 

Figure 4 Fabrication nanostructures and combined chemo/gene/photothermal  

targeted therapy of tumor cells [50]. 

4. Black phosphorus-based drug delivery system as cancer therapy application 

Due to advances in of the molecular, cellular, and physiological mechanisms involved within the initiation and 
progression of cancer, it remains one of the leading causes of mortality across all age groups. To date, tremendous effort 
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has been poured into developing therapeutic approaches to beat tumor invasion and metastasis. Current cancer 
therapies – chemotherapy, PTT, PDT, RT, immunotherapy. Potential of BPNSs based drug delivery system for 
therapeutic application in Cancer including the subsequent approaches. 

4.1. Photothermal therapy 

Among various anticancer treatments, NIR PTT mediated by BP-based DDSs has received increased attention due to its 
noninvasiveness, biocompatibility, and precision targeting of tumors via the utilization of external laser irradiation with 
adjustable intensity, to attenuate both damage to the encompassing healthy tissues and systemic cytotoxicity [51-57]. 
As water and blood cells minimally absorb NIR, it can penetrate more deeply into cancer cells than UV/visible light. 
Photothermal conversion agents harvest the energy from light and transform it into local heat to extend the temperature 
of the encompassing environment; this heat are often used for PTT to realize the thermal ablation of tumor cells and 
trigger necrobiosis (Figure 5) [58-65]. 

 

Figure 5 Enhanced stability of black phosphorus [59]. 

4.2. Photodynamic therapy 

Photodynamic Therapy (PDT) has become a promising treatment modality and has been approved for clinical use, 
including treatment for cancers of the lung, esophagus, and skin. PDT offers significant effectiveness, specific 
spatiotemporal selectivity, minimal invasiveness, and limited side effects, making it an alternate option for patients who 
aren’t candidates for the radical operations [66-68]. PDT has three major components: light, photosensitizers (PS), and 
oxygen molecules. A selected light of appropriate wavelength provides energy for activation. A PS administered 
beforehand and brought up by tumor cells harvests this light and engages in photodynamic reactions with oxygen-
containing substrates (e.g., molecular oxygen, water) to supply singlet oxygen (SO) or reactive oxygen species (ROS). 
This process induces selective damage to tumors by destroying their tissues and therefore the vasculature surrounding 
them, killing cancer cells [69-77].  

Conventional organic PS currently in use exhibit poor water solubility, low stability, and low quantum yield, and other 
ambiguous security issues [78-80]. consequently, certain semiconductors and photo catalysts are commonly utilized as 
new PS agents and used in Nano medicine due to its less invasive nature [81-82]. BP may be a metal free semiconductor 
with a high 1O2 quantum yield and thus might be a promising therapeutic agent to be used use in PDT [83]. However, 
its excitation wavelength is within the visible light region, which has limited penetration depth, so tissue interference 
impedes BP’s biomedical application during this capacity. Thus, it’s often necessary to load it with molecules which will 
be activated within the NIR [84].  

The antitumor performance in vivo was even stronger, clearly demonstrating the potential applicability of 
UCNPs−BPNSs as a PDT antitumor agent with a one 808 nm laser. BPNSs based self-supporting oxygen system that 
catalyzes excess intracellular H2O2 to O2 by well-designed heme oxidation, which may offer enough oxygen for PDT [85]. 
Few-layer black phosphorus (FLBP) nanosheets show potential application in biomedicine like as PDT, and are 
therefore commonly utilized in anticancer therapy and nanomedicine due to being relatively less invasive. As an 
emerging 2D layered semiconductor, FLBP nanosheets have recently been utilized as a completely unique PS in PDT 
[86]. 
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4.3. PTT combined with Chemotherapy 

A multifunctional nanoplatform supported BPNS was developed for chemo-photothermalsynergistic cancer therapy. 
The BPNSs were successfully prepared by a liquid exfoliation technique. Doxorubicin (DOX), as a model drug, was 
loaded into the cavity of poly amidoamine (PAMAM) dendrimersusing thin film hydration method. Then, PAMAM@DOX 
was coated on the surface of BPNS using an electrostatic adsorption method that combined bath sonication with 
magnetic stirring. Hyaluronic acid (HA) was also modified onto the BPNS-PAMAM@DOX through electrostatic 
adsorption. PAMAM and HA layer could effectively isolate BPNSs from water and air to reinforce physiological stability.  

BPNSs and BPNS-PAMAM@DOX-HA were characterized by particle size, zeta potential, morphology, UV-vis- NIR 
absorption spectra, stability, photothermal performance and photothermal stability. This nanosystem exhibited an 
honest Ph and NIR dual-responsive drug release property. Additionally, the obtained BPNS - PAMAM@DOX-HA 
nanocomposites possessed excellent PTT efficiency both in vitro and in vivo. The in vitro cell experiments suggested 
that the targeted BP NS-PAMAM@DOX-HA presented greater cytotoxicity and better cellular uptake efficiency [86]. 
Although chemotherapy has achieved a particular degree of success within the treatment of cancer, monotherapy has 
deficits that limits future development and application, including poor drug specificity and targeting, low cellular uptake 
efficiency, and drug resistance caused by future use.  

PTT could also be a lightphysical hyperthermia strategy with some effectiveness but also ineluctable deficiencies. When 
these two therapies are combined, though, they will address each other’s drawbacks. For instance, PTT is during a 
position completely to eradicate cancer cells, whereas chemotherapy could alsobe a systemic treatment paradigm for 
killing both Bimodal synergistic cancer therapy thatmixes PTT with chemotherapy is now well documented as an 
effecient strategy [87]. 

4.4. PTT combined with PDT 

Combined photothermal and photodynamic therapy is implemented for excellent performance in inhibiting tumor 
growth. An imaging guided mitochondria targeting photothermal/photodynamic nanosystem has been developed for 
functionalized BPNSs. In the nano system, BPNSs are coated with polydopamine (PDA) then covalently linked with both 
Chlorin e6 (Ce6) and triphenylphosphonium (TPP) through carbodiimide reaction between the amino and therefore the 
carboxyl group, forming BP@PDA–Ce6&TPP NSs. Due to the strong absorbance of BP@PDA within the NIR region and 
therefore the highly efficient ROS generation ofCe6, the as-prepared nanosystem with mitochondria-targeting 
capacity(TPPmoiety) shows remarkably enhanced efficiency in neoplastic cell killing [88]. 

5. Analysis of BPN-based drug delivery systems 

Qualitative and quantitative analysis of various drug delivery systems including herbals drug delivery systemsis last 
and essential part of analysis that ensures the quality and safety of the products. The systems includes tablets, capsules, 
liposomes, nansuspensions, etc [89-132]. BPN-based drug delivery systems containing drugs are also analyzed by 
routine quality control techniques. The quality control techniques includes high performance thin layer 
chromatography, high performance liquid chromatography, gas chromatography, Uv-spectrophotometry, etc [133-
157]. 

6. Future prospective 

The fascinating charm of the system with enhanced performance has gained the attention of the researchers throughout 
the world to focus their eyes on the development of BP-based formulations. Notably, it is likely to be found to exhibit 
more incredible biological functions with the exploration of more BP-based systems. 

7. Conclusion 

Taking the advantages of black phosphorous nanosheet-based drug delivery systems over other delivery systems, this 
could be the best choice of option for the delivery of anticancer agents. This will help the drug to reach at the specific 
site and shows target oriented effect. Further, it could be used in biomedical fields too.  
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