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Abstract 

QSAR study has been carried out on the CDK2 inhibitory activity of 6-substituted 2-arylaminopurines in 0D- to 2D-
Dragon descriptors. The derived QSAR models have revealed that the reciprocal hyper-detour index (descriptor Rww) 
and path/walk 5 Randic shape index (descriptor PW5) played a pivotal role in rationalization of CDK2 inhibition activity 
of titled compounds. Molecular weight (MW), mean atomic volume scaled on Carbon atom (Mv) and atomic properties 
such as mass and atomic Sanderson electronegativity in terms of atomic properties weighted descriptors MATS1m, 
MATS3e, MATS4e, GATS3e and GATS8e, certain atom centred fragments such as H attached to C0(sp3) no X attached to 
next C (descriptor H-046),R--CH--X (descriptor C-027) and R--CX--X (descriptor C-029) are also predominant to explain 
CDK2 inhibition actions of 6-substituted 2-arylaminopurines.  

PLS analysis has also corroborated the dominance of CP-MLR identified descriptors. Applicability domain analysis 
revealed that the suggested model matches the high quality parameters with good fitting power and the capability of 
assessing external data and all of the compounds was within the applicability domain of the proposed model and were 
evaluated correctly. 

Keywords: QSAR; CDK2 inhibitors; Combinatorial protocol in multiple linear regression (CP-MLR) analysis; PLS; 
Dragon descriptors; 6-Substituted 2-arylaminopurines. 

1. Introduction

The cyclin-dependent kinase (CDK) not only plays a vital role in the eukaryotic cell cycle regulation but also have 
imperative role in apoptosis, transcription, differentiation and neuronal function [1,2]. The main feature of human 
cancer is the deregulation of the cell cycle. This deregulation is often has association with aberrant CDK activity via the 
mechanisms which include mutation or overexpression of CDKs, and modulation of the CDK activity through mutations 
in genes encoding proteins [3-5]. The common feature of most of the human tumors are the overexpression of cyclin E 
and/or suppression of p27Kip1 [6,7]. The partner cyclins A and E when associated with CDK2 causes activation of CDK2 
on the other hand, the endogenous proteins p21Cip1 and p27Kip1 inhibits CDK2. Considering, the inhibition of CDKs as 
a potential therapeutic target a large number of ATP-competitive inhibitors have been reported [5-9]. The poor kinase 
selectivity and uncertainty as to which CDK constitutes the most appropriate therapeutic target hindered the 
development of CDK inhibitors, clinically [3]. 

The knockdown experiments where the loss of CDK2 failed to induce cell cycle arrest in tumour cell lines [10] and mouse 
knockout experiments with viable animals [11,12] originally questioned the validity of CDK2 as a cancer therapeutic 
target. It is however also anticipated the utility of CDK inhibitors where the cancer has addiction to enhanced CDK 
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activity or in cases with identified synthetic lethalities. Studies, with maintained CDK2 expression and inhibited kinase 
activity, based on chemical genetic approach are supportive to CDK2 as a valid cancer target. A marked growth 
inhibition was observed by the selective CDK2 inhibition in human cancer cells having transformation with various 
oncogenes [13]. CDK2-selective inhibitors in combination with phosphatidylinositol-3-kinase induced apoptosis in 
malignant glioma xenografts through a synthetic-lethal interaction [14]. The evidence of CDK2 implications in BRCA-
deficient cancers [15], euroblastoma [16] and ovarian cancer [17] with supportive clinical data [18] put CDK2 inhibitors 
as cancer therapeutic agents [19,20]. The cell toxicity caused by inhibition of CDK1, which have close structural 
homology to CDK2, must be avoided.  

A variety of selective ATP-competitive CDK2 inhibitors based on purine scaffold, utilizing a structure-lead approach, has 
been reported [21-23]. The phosphorylation of RNA polymerase II by CDKs leads to transcriptional regulation [2,24].  

The pharmacological effects of selective CDK2 inhibitors such as seliciclib, dinaciclib and SNS-032 were concealed by 
the modulation of protein synthesis by off-target inhibition of CDK7/CDK9 [3, 25, 26]. The inhibitor interactions within 
the ATP-binding site has been revealed by the crystal structures of purines complexed with T160-phosphorylated 
CDK2-cyclin A [21-23, 27, 28]. A novel series of compounds based on purine scaffold, as selective CDK2 inhibitors, has 
been reported by Coxon et al. [29]. The aim of present communication is to establish the quantitative relationships 
between the reported activities and molecular descriptors unfolding the substitutional changes in titled compounds. 

2. Material and methods 

2.1. Biological actions and theoretical molecular descriptors 

The reported twentyeight purine derivatives are considered as the data set for present study [29]. These derivatives 
were evaluated for their CDK2 inhibitory activities and were reported as IC50. The reported CDK2 activity on molar basis 
(as pIC50) along with the structures of these analogues is shown in Table 1. The data set was sub-divided into training 
set to develop models and test set to validate the models externally. The test set compounds which were selected using 
an in-house written randomization program, are also mentioned in Table 1. 

Table 1 Structures, observed and calculated CDK2 inhibitory activities of purine derivatives 

 

Cpd. R1 R2 pIC50(M)a 

Obsd.  Eq. (2) Eq. (3) PLS 

1 O

 

NH2 4.77 5.71 5.13 5.71 

2 O

 NH 

6.01 5.76 6.08 5.75 

3b O

 NH

H2NO2S

 

8.30 7.81 7.32 7.35 

4 H NH2 5.40 5.43 5.02 5.34 

5 H 

NH 

4.21 4.28 4.75 4.35 
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6b H 

NH

H2NO2S

 

5.82 6.08 6.39 6.36 

7 OH(C=O) 

NH 

4.47 3.89 3.78 3.80 

8b OH(C=O) 

NH

H2NO2S

 

4.28 5.82 6.11 6.13 

9b O 

NH

H2NO2S

 

7.59 8.02 7.29 8.00 

10 O 

NH

H2NO2S

 

8.10 7.94 7.48 7.90 

11 

O 
NH

H2NO2S

 

8.00 8.41 8.32 8.61 

12 O
 

NH

H2NO2S

2 

8.52 7.96 7.85 7.98 

13 

O 
NH

H2NO2S

 

9.00 8.36 8.54 8.60 

14 
O 

NH

H2NO2S

 

7.72 7.99 7.09 7.48 

15 

Si

 

NH

H2NO2S

 

7.77 8.54 8.86 7.90 

16 H 

NH 

4.68 4.79 5.28 4.80 

17 H 

NH

H2NO2S

 

6.08 6.51 6.88 6.90 

18 Me 

NH 

5.19 5.36 6.00 5.14 

19b Ph 

NH 

5.05 4.17 5.40 4.61 

20  

NH

H2NO2S

 

6.66 6.63 6.86 7.16 

21b 
 

NH

H2NO2S

 

7.72 6.65 6.89 7.20 

22 

 NH

H2NO2S

2 

7.62 6.66 6.30 6.60 
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23 

OMe NH

H2NO2S

 

7.41 6.55 7.06 7.08 

24 OMe

 NH

H2NO2S

 

7.28 7.05 7.07 7.19 

25 

Ph NH

H2NO2S

 

7.36 6.91 6.55 6.56 

26b 

O

O

 NH

H2NO2S

 

6.24 7.61 7.16 7.43 

27 

O

 

NH

H2NO2S

 

5.85 6.35 6.53 6.34 

28 S

S

 

NH

H2NO2S

 

5.17 6.21 5.85 6.07 

aIC50 on molar basis, Taken from reference [29]; bCompound included in test set. 

Table 2 Descriptor classes used for the modeling of CDK2 inhibitory activity of purine derivatives 

S. No.  Descriptor Class (Acronyms)a Definition and Scope 

1 Constitutional (CONST) Dimensionless or 0D descriptors; independent from molecular 
connectivity and conformations 

2 Topological (TOPO) 2D-descriptor from molecular graphs and independent conformations 

3 Molecular walk counts (MWC) 2D-descriptors representing self-returning walk counts of different 
lengths 

4 Modified Burden eigenvalues 
(BCUT)  

 

2D-descriptors representing positive and negative eigenvalues of the 
adjacency matrix, weights of the 

diagonal elements and atoms 

5 Galvez topological charge 
indices (GALVEZ)  

2D-descriptors representing the first 10 eigenvalues of corrected 
adjacency matrix 

6 2D-autocorrelatons  

(2D-AUTO)  

 

 

Molecular descriptors calculated from the molecular graphs by 
summing the products of atom weights 

of the terminal atoms of all the paths of the considered path length (the 
lag) 

7 Functional groups (FUN)  Molecular descriptors based on the counting of the chemical functional 
groups 

8 Atom centered fragments (ACF)  Molecular descriptors based on the counting of 120 atom centered 
fragments, as defined by Ghose-Crippen 

9 Empirical (EMP) 

 

1D-descriptors represent the counts of nonsingle bonds, hydrophilic 
groups and ratio of the number of aromatic bonds and total bonds in an 
H-depleted molecule 

10 Properties (PROP)  1D-descriptors representing molecular properties of a molecule 
aReference [31]. 
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The structures of the all the compounds (listed in Table 1) were drawn in 2D ChemDraw [30] and subjected to energy 
minimization in the MOPAC using the AM1 procedure for closed shell system after converting these into 3D modules. 
The energy minimization was carried out to attain a well defined conformer relationship among the congeners under 
study. The 0D- to 2D-molecular descriptors of titled compounds was computed using DRAGON software [31]. This 
software offers a large number of descriptors corresponding to ten different classes of 0D- to 2D-descriptor modules. 
The different descriptor classes include the constitutional, topological, molecular walk counts, BCUT descriptors, Galvez 
topological charge indices, 2D-autocorrelations, functional groups, atom-centered fragments, empirical descriptors and 
the properties describing descriptors. These descriptors offer characteristic structural information specific to the 
descriptor class. The definition and scope of these descriptor’s classes is given in Table 2. 

A total number of 494 descriptors, belonging to 0D- to 2D- modules, have been computed to obtain most appropriate 
models describing the biological activity. Prior to model development procedure, all those descriptors that are inter-
correlated beyond 0.90 and showing a correlation of less than 0.1 with the biological endpoints (descriptor versus 
activity, r < 0.1) were excluded. This procedure has reduced the total descriptors from 494 to 77 as relevant ones to 
explain the biological actions of titled compounds. 

2.2. Development and validation of model 

The combinatorial protocol in multiple linear regression (CP-MLR) [32-36] and partial least squares (PLS) [37-39] 
procedures were used in the present work for developing QSAR models.The CP-MLR is a “filter”-based variable selection 
procedure, which employs a combinatorial strategy with MLR to result in selected subset regressions for the extraction 
of diverse structure–activity models, each having unique combination of descriptors from the generated dataset of the 
compounds under study. The embedded filters make the variable selection process efficient and lead to unique solution. 
Fear of “chance correlations” exists where large descriptor pools are used in multilinear QSAR/QSPR studies [40,41]. In 
view of this, to find out any chance correlations associated with the models recognized in CP-MLR, each cross-validated 
model has been subjected to randomization test [42,43] by repeated randomization (100 simulation runs) of the 
biological responses. The datasets with randomized response vector have been reassessed by multiple regression 
analysis. The resulting regression equations, if any, with correlation coefficients better than or equal to the one 
corresponding to unscrambled response data were counted. This has been used as a measure to express the percent 
chance correlation of the model under scrutiny. 

Validation of the derived model is necessary to test its prediction and generalization within the study domain. For each 
model, derived by involving n data points, a number of statistical parameters such as r (the multiple correlation 
coefficient), s (the standard deviation), F (the F ratio between the variances of calculated and observed activities), and 
Q2LOO (the cross-validated index from leave-one-out procedure) have been obtained to access its overall statistical 
significance. In case of internal validation, Q2LOO is used as a criterion of both robustness and predictive ability of the 
model. A value greater than 0.5 of Q2 index suggests a statistically significant model. The predictive power of derived 
model is based on test set compounds. The model obtained from training set has a reliable predictive power if the value 
of the r2Test (the squared correlation coefficient between the observed and predicted values of compounds from test set) 
is greater than 0.5. Additional statistical parameters such as, the Akaike’s information criterion, AIC [44,45], the Kubinyi 
function, FIT [46,47] and the Friedman’s lack of fit, LOF [48], have also been calculated to further validate the derived 
models. The AIC takes into account the statistical goodness of fit and the number of parameters that have to be estimated 
to achieve that degree of fit. The FIT, closely related to the F-value, proved to be a useful parameter for assessing the 
quality of the models. A model which is derived in k independent descriptors, its F-value will be more sensitive if k is 
small while it becomes less sensitive if k is large. The FIT, on the other hand, will be less sensitive if k is small whereas 
it becomes more sensitive if k is large. The model that produces the lowest AIC value and highest FIT value is considered 
potentially the most useful and the best. The LOF factor takes into account the number of terms used in the equation 
and is not biased, as are other indicators, toward large number of parameters. 

2.3. Applicability domain 

The usefulness of a model is based on its accurate prediction ability for new congeners. A model is valid only within its 
training domain and new compounds must be assessed as belonging to the domain before the model is applied. The 
applicability domain (AD) is evaluated by the leverage values for each compound [49]. A Williams plot (the plot of 
standardized residuals versus leverage values (h)) is constructed, which can be used for a simple graphical detection of 
both the response outliers (Y outliers) and structurally influential chemicals (X outliers) in the model. In this plot, the 
AD is established inside a squared area within ±x standard deviations and a leverage threshold h*, which is generally 
fixed at 3(k + 1)/n (n is the number of training set compounds and k is the number of model parameters), whereas x = 
2 or 3. If the compounds have a high leverage value (h >h*), then the prediction is not trustworthy. On the other hand, 
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when the leverage value of a compound is lower than the threshold value, the probability of accordance between 
predicted and observed values is as high as that for the training set compounds. 

3. Results and discussion 

3.1. QSAR results 

In multi-descriptor class environment, exploring for best model equation(s) along the descriptor class provides an 
opportunity to unravel the phenomenon under investigation. In other words, the concepts embedded in the descriptor 
classes relate the biological actions revealed by the compounds. For the purpose of modeling study, 3 compounds have 
been included in the test set for the validation of the models derived from 14 training set compounds. A total number of 
77 significant descriptors from 0D- to 2D- classes have been subjected to CP-MLR analysis with default “filters” set in it. 
Statistical models in one, two and three descriptors have been derived to achieve the best relationship correlating CDK2 
inhibitory activity. One model in two descriptors having r2Test> 0.5, were obtained through CP-MLR. The analysis 
resulted in to 06 three parameter models which have shared 14 descriptors among them. All these 14 descriptors along 
with their brief meaning, average regression coefficients, and total incidence are listed in Table 3, which will serve as a 
measure of their estimate across these models.  

Table 3 Identified descriptorsa along with their class, physical meaning, average regression coefficient and incidenceb 

Descriptor class, average regression coefficientand (incidence) 

Descriptor class Descriptor (physical meaning), avg reg coeff (incidence) 

Constitutional 
descriptors 
(CONST): 

MW (molecular weight), 3.272(1);AMW (average molecular weight) -2.835(1); Mv (mean 
atomic volume scaled on Carbon atom), -2.415(1) 

Topological 
descriptors (TOPO): 

Rww (reciprocal hyper-detour index), 5.067(2); PW5 (path/walk 5 Randic shape index), -
6.348(1) 

2D autocorrelations 

(2D-AUTO): 

MATS1m (Moran autocorrelation - lag 1 / weighted by atomic masses), -3.955(1); MATS6v, 
(Moran autocorrelation - lag 6 / weighted by atomic van der Waals volumes), -4.391(1); 
MATS3e (Moran autocorrelation lag-3/ weighted by atomic Sanderson electronegativities), -
3.922(1); MATS3e (Moran autocorrelation lag-4/ weighted by atomic Sanderson 
electronegativities), -5.515(1), GATS3e (Geary autocorrelation of lag-2/ weighted by atomic 
Sanderson electronegativities), 3.165(2);GATS8e (Geary autocorrelation of lag-8/ weighted 
by atomic Sanderson electronegativities), -2.719(1)  

Atom centred 
fragments (ACF): 

C-027 (R--CH--X), -2-210(2); C-029 (R--CX--X), 1.764(2); H-046 (H attached to C0(sp3) no X 
attached to next C), 1.428(1) 

aThe descriptors are identified from the three parameter models for activity emerged from CP-MLR protocol with filter-1 as 0.79, filter-2 as 2.0, filter-
3 as 0.773 and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 21 compounds. bThe average regression coefficient of the descriptor corresponding to all 
models and the total number of its incidence. The arithmetic sign of the coefficient represents the actual sign of the regression coefficient in the 
models.  

The representative model in two descriptors and highly significant models in three descriptors are given below. 

pIC50 = 3.898 + 3.431(0.735)MATS6e + 1.659(0.434)C-029 

n = 21, r = 0.799, s = 0.927, F = 15.917, Q2LOO = 0.509, Q2L5O = 0.651 

r2Test = 0.517, FIT = 1.273, LOF = 1.125, AIC = 1.147……………….. (1) 

pIC50 = 5.427 + 4.879(0.664)Rww-2.719(0.619)GATS8e + 1.461(0.296)C-029 

n = 21, r = 0.922, s = 0.612, F = 32.429, Q2LOO = 0.728, Q2L5O = 0.742 

r2Test = 0.507, FIT = 3.242, LOF = 0.595, AIC = 0.551………………… (2) 
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pIC50 = 2.562 + 5.255(0.790)Rww +3.198(0.733)GATS3e + 1.428(0.566)H-046 

n = 21, r = 0.889, s = 0.725, F = 21.511, Q2LOO = 0.611, Q2L5O = 0.575 

r2Test = 0.529, FIT = 2.151, LOF = 0.834, AIC = 0.773………………..…(3) 

where; n, r, s and F represent respectively the number of data points,the multiple correlation coefficient, the standard 
deviation and the F-ratio between the variances of calculated and observed activities. In above regression equations, 
the values given in the parentheses are the standard errors of the regression coefficients. The signs of the regression 
coefficients suggest the direction of influence of explanatory variables in the models. The positive regression coefficient 
associated to a descriptor will augment the activity profile of a compound while the negative coefficient will cause 
detrimental effect to it. In the randomization study (100 simulations per model), none of the identified models has 
shown any chance correlation. 

  

 

Figure 1 Plot of observed and calculated pIC50 values of training- and test-set compounds for CDK2 inhibition 

The descriptor Rww participated in above models is the topological descriptor representing reciprocal hyper-detour 
index. The positive influence of descriptors Rww on the activity suggested that higher value of it would be beneficiary 
to the activity. The descriptor MATS6e, GATS3e and GATS8e are 2D-autocorrelations. Descriptors MATS6e and GATS3e 
showed positive contribution and descriptor GATS8e negative contribution to the activity. Thus, lower value of atomic 
Sanderson electronegativities weighted Geary autocorrelations of lag-8 and higher values of atomic Sanderson 
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electronegativities weighted Moran autocorrelations of lag-6 and atomic Sanderson electronegativities weighted Geary 
autocorrelations of lag-3 would be favorable to the activity. Additionally, positive sign of atom centered fragment class 
descriptors C-029 and H-046 representing R--CX--X and H attached to C0(sp3) no X attached to next C, respectively, 
advocated that more number of such structural fragments in a molecule would be supportive to elevated activity.  

These models have accounted for nearly 85% variance in the observed activities. The values greater than 0.5 of Q2 index 
is in accordance to a reasonable robust QSAR model. The pIC50 values of training set compounds calculated using Eqs. 
(2) and (3) have been included in Table 1. The models (2) and (3) are validated with an external test set of 7 compounds 
listed in Table 1. The predictions of the test set compounds based on external validation are found to be satisfactory as 
reflected in the test set r2 (r2Test) values and the same is reported in Table 1. The plot showing goodness of fit between 
observed and calculated activities for the training and test set compounds is given in Figure 1. 

A partial least square (PLS) analysis has been carried out on these 14 CP-MLR identified descriptors (Table 3) to 
facilitate the development of a “single window” structure–activity model. For the purpose of PLS, the descriptors have 
been autoscaled (zero mean and unit SD) to give each one of them equal weight in the analysis. In the PLS cross-
validation, two components are found to be the optimum for these 14 descriptors and they explained 85.74% variance 
in the activity. The MLR-like PLS coefficients of these 14 descriptors are given in Table 4. 

Table 4 PLS and MLR-like PLS models from the 14 descriptors of three parameter CP-MLR models for CDK2 inhibitory 
activities 

A: PLS equation 

PLS components PLS coefficient (s.e.)a 

Component-1 -0.777(0.076) 

Component-2 0.180(0.088) 

Constant 6.536 

B: MLR-like PLS equation 

S. No. Descriptor MLR-like coefficientb (fraction contribution)c Order 

1 MW 0.931 0.082 6 

2 AMW 0.089 0.008 13 

3 Mv -0.809 -0.086 4 

4 Rww 1.830 0.135 1 

5 PW5 -1.073 -0.083 5 

6 MATS1m -0.573 -0.054 10 

7 MATS6v -0.715 -0.051 11 

8 MATS3e -0.760 -0.082 7 

9 MATS4e -0.713 -0.070 9 

10 GATS3e 1.132 0.098 3 

11 GATS8e -0.590 -0.048 12 

12 C-027 -0.734 -0.078 8 

13 C-029 0.707 0.121 2 

14 H-046 0.038 0.004 14 

  Constant 7.164  

C: PLS regression statistics Values  

n 21 
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r 0.926 

s 0.584 

F 53.841 

FIT 4.307 

LOF 0.446 

AIC 0.454 

Q2LOO 0.814 

Q2L5O 0.825 

r2Test 0.507 
      aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in terms  

of descriptors for their original values;cf.c. is fraction contribution of regression coefficient, computed from 
  the normalized regression coefficients obtained from the autoscaled (zero mean and unit s.d.) data. 

For the sake of comparison, the plot showing goodness of fit between observed and calculated activities (through PLS 
analysis) for the training and test set compounds is also given in Figure 1. Figure 2 shows a plot of the fraction 
contribution of normalized regression coefficients of these descriptors to the activity.  

 

Figure 2 Plot of fraction contribution of MLR-like PLS coefficients (normalized) against 14 CP-MLR identified 
descriptors (Table 3) associated with CDK2 inhibitory activity of purine derivatives 

The PLS analysis has suggested Rww as the most determining descriptor for modeling the activity of the compounds 
(descriptor S. No. 4 in Table 4; Figure 2). The other nine descriptors in decreasing order of significance are C-029, 
GATS3e, Mv, PW5, MW, MATS3e, C-027, MATS4e and MATS1m. Descriptor Rww, C-029 and GATS3e are part of Eqs. (2) 
and (3) and convey same inference in the PLS model as well.  

It is inferred from the PLS analysis that a higher value of descriptors MW (molecular weight) and lower values of 
descriptors Mv (mean atomic volume scaled on Carbon atom), PW5 (path/walk 5 Randic shape index), MATS3e and 
MATS4e (atomic Sanderson electronegativities weighted Moran autocorrelations of lag 3 and 4, respectively) and 
MATs1m ((Moran autocorrelation of lag-1/ weighted by atomic masses) in addition to the absence or lower number of 
R--CH--X type atom centered fragment (descriptor C-027) in a molecular structure would be advantageous to the 
activity. It is also observed that PLS model from the dataset devoid of CP-MLR identified 14 descriptors (Table 3) is 
inferior in explaining the activity of the analogues. 
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3.2. Applicability domain (AD) 

On analyzing the model AD in the Williams plot, shown in Figure 3, of the model based on the whole dataset (Table 5), 
it has appeared that none of the compound was identified as an obvious outlier for the CDK2 inhibitory activity if the 
limit of normal values for the Y outliers (response outliers) was set as 2.5 times of standard deviation units. None of the 
compounds listed in Table 1 were found to have leverage (h) values greater than the threshold leverage (h*=0.571). For 
both the training-set and test-set, the suggested model matches the high quality parameters with good fitting power 
and the capability of assessing external data. Furthermore, all of the compounds were within the applicability domain 
of the proposed model and were evaluated correctly.  

Table 5 Models derived for the whole data set (n = 28) in descriptors identified through CP-MLR 

Model r s F Q2LOO Eq. 

pIC50 = 5.416 + 4.478(0.761)Rww  

-2.479(0.606)GATS8e + 1.534(0.302)C-029 
0.879 0.727 27.459 0.697 (2a) 

pIC50 = 2.136 + 5.275(0.795)Rww 

+3.658(0.724)GATS3e + 2.123(0.505)H-046 
0.865 0.766 23.983 0.629 (3a) 

 

 
 

Figure 3 Williams plot for the training-set and test- set compounds for MMP-13 inhibitory activity. The horizontal 
dotted line refers to the residual limit (±2×standard deviation) and the vertical dotted line represents threshold 

leverage h* (= 0.571) 

4. Conclusion 

QSAR study has been carried out on the CDK2 inhibitory activity of 6-substituted 2-arylaminopurines in 0D- to 2D-
Dragon descriptors. The derived QSAR models have revealed that the reciprocal hyper-detour index (descriptor Rww) 
and path/walk 5 Randic shape index (descriptor PW5) played a pivotal role in rationalization of CDK2 inhibition activity 
of titled compounds. Molecular weight (MW), mean atomic volume scaled on Carbon atom (Mv) and atomic properties 
such as mass and atomic Sanderson electronegativity in terms of atomic properties weighted descriptors MATS1m, 
MATS3e,MATS4e, GATS3e and GATS8e, certain atom centred fragments such as H attached to C0(sp3) no X attached to 
next C (descriptor H-046),R--CH--X (descriptor C-027) and R--CX--X (descriptor C-029) are also predominant to explain 
CDK2 inhibition actions of 6-substituted 2-arylaminopurines.  

PLS analysis has also corroborated the dominance of CP-MLR identified descriptors. Applicability domain analysis 
revealed that the suggested model matches the high quality parameters with good fitting power and the capability of 
assessing external data and all of the compounds was within the applicability domain of the proposed model and were 
evaluated correctly. 
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