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Abstract 

The goal of this paper was to study how machine learning techniques have been applied in PrEP (Pre-exposure 
prophylaxis) and HIV prediction to identify individuals who are at a higher risk of acquiring HIV infection and to 
optimize the used of PrEP, which is an effective method of preventing HIV transmission. The results indicate that 
machine learning has been used to HIV risk, optimizing PrEP use, developing personalized PrEP regimens, and 
identifying PrEP candidates. In predicting HIV risk, machine learning algorithms have been developed to predict HIV 
risk based on various factors such as demographic information, sexual behavior and drug use. The models can identify 
individuals who are at a higher risk of acquiring HIV infection and can be used to target interventions such as PrEP to 
those who are most in need. Regarding optimizing PrEP use, machine learning has been utilized to optimize PrEP usage 
by identifying the factors that are associated with adherence to PrEP. These models can help healthcare providers to 
tailor their interventions to promote PrEP adherence and improve its effectiveness. In addition, machine learning 
techniques have been used to develop personalized PrEP regimens based on an individual’s HIV risk profile. These 
models can help healthcare providers to optimize PrEP use and reduce the risk of HIV transmission. It was also 
established that machine learning models have been used to identify individuals who are most likely to benefit from 
PrEP. These models can help healthcare providers to target PrEP interventions to those who are likely to benefit from 
them. 
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1. Introduction

The HIV epidemic is evaluated to affect 76 million people worldwide, roughly 33 million of whom have died [1]. Whereas 
there is a 60% reduction in evaluated AIDS-related annual deaths, the development has not been considered in HIV 
incidence which have a 17% decrease in HIV incidence. This shows an increase in the number of people living with HIV 
[2], [3]. UNAIDS target of 95-95-95 is the fast track for reducing HIV incidences to achieve the global efforts to end HIV 
Pandemic by 2030. This means that 95% of people living with HIV should know their status, 95 % of the diagnosed put 
on the antiretroviral and 95% of those on antiretrovirals have viral suppression by 2030. Although there are advances 
in reducing HIV mortality, there are high incidence rates that are averting the global attempt to end the pandemic by 
2030. Table 1 provides examples of major breakthroughs in the field of PrEP and HIV prediction. 

UNAIDS has laid out some preventive strategies like PrEP (Pre-exposure prophylaxis) as one of the priorities to lessen 
the transmission that is undermining the global efforts to end the HIV pandemic. The authors in [4] suggest that accurate 
and granular risk prediction is crucial for the campaigns, though they may be insufficient in areas where the burden is 
soaring. PrEP and antiretroviral drugs have been shown to be 100% effective when taken correctly.  
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Table 1 Major breakthroughs in PrEP and HIV prediction 

Breakthrough Description 

Discovery of PrEP Pre-exposure prophylaxis (PrEP) was discovered as a highly effective method for preventing 
HIV transmission in high-risk populations. This breakthrough transformed HIV prevention 
strategies and provided an alternative to condom use. 

Identification of 
High-risk 
Populations 

Researchers have used machine learning algorithms to identify subpopulations at higher risk 
of HIV infection, such as men who have sex with men, transgender women, and people who 
inject drugs. This knowledge has helped to target HIV prevention efforts more effectively. 

Development of 
Early Warning 
Systems 

Machine learning models have been developed to predict HIV outbreaks in real-time by 
analyzing trends in social media data, Google searches, and other non-traditional sources. This 
has the potential to allow for more rapid responses to emerging outbreaks. 

Improved 
Accuracy of 
Predictive Models 

Advances in machine learning algorithms and data analytics have resulted in more accurate 
predictive models for PrEP and HIV transmission risk. These models can incorporate complex 
data sources, such as social network analysis, to improve their accuracy. 

Development of 
Tailored 
Interventions 

Machine learning models have been used to identify individual-level risk factors for HIV 
transmission and PrEP adherence, allowing for tailored interventions to be developed for each 
patient. This personalized approach has the potential to improve the effectiveness of HIV 
prevention efforts. 

2. Machine learning for PrEP and HIV prediction 

Machine learning [5] has been found to be useful both in HIV risk prediction and as a decision support tool for guiding 
pre-exposure prophylaxis (PrEP) treatment. More recent studies have developed machine learning algorithms using 
electronic health records data to identify patients at risk of acquiring HIV, hence resulting to discussion of PrEP with 
the health provider [6]. These electronic health records contain rich data for HIV risk prediction by using the following 
characteristics: demographic features, social history, diagnosis, laboratory tests and results and the prescriptions used. 

In [7], machine learning has been defined as the process by which computational and statistical algorithms “learn” from 
data, usually with limited human input. This has helped in formation of algorithms that can increase their performance 
through prediction, pattern recognition, classification and regression using the provided data. Machine learning 
algorithms range in their complexity [8], [9], [10], [11]. Traditional regression models are used for basic machine 
learning algorithms. They classify dataset as input and objective [12].To satisfy modeling goal, these machines learn 
interdependently and are likely to maximize the probability [13]. In most cases, the focus is on the role of machine 
learning in HIV prevention and to improve prediction in terms of risk for HIV and PrEP treatment. Being data driven, 
machine learning algorithms can automatically learn from data that identifies complex, nonlinear patterns, and 
exploiting complex interactions between risk factors [14].This is the advantage they pose over developing predictive 
models [15], [16] by not requiring statistical inferences or assumptions. These models have been used in prediction of 
future risks of other conditions like Alzheimer’s disease [17], Myocardial infarction [18], suicide [19] and type 2 diabetes 
[20]. Authors in [21] used machine learning in prediction of HIV/AIDs patients in Guangxi, China. 

The authors in [22] identified that machine learning techniques [23] that can help to identify undiagnosed PLWH with 
a fairly high level of accuracy. The use of machine learning technique has decreased bias in incomplete discovery of HIV 
status and HIV RNA levels when assessing population level in terms of viral HIV suppression [24]. Moreover, in 
observational setting, it has reduced the bias on the oversight of the regression model. This allows flexible control of 
measured confounders [25], suggesting that fewer features reduce the risk of model over-fitting and leads to 
improvement of the algorithm [26]-[29]. 

In addition, machine learning algorithms are fast-expanding research areas which are finding their way in HIV research. 
In machine learning for prediction, AI has also been used to facilitate HIV sero-disclosure [30]. In a small pilot study in 
[31], the authors have developed and evaluated the Tough Talks virtual reality program to help young MSM role-play 
HIV serostatus disclosure, with the goal of increasing protective behaviors against HIV transmission. The authors 
gathered qualitative data through focus groups with young MSM living with HIV on their HIV sero-disclosure 
experiences. These were then used to create a database of utterances that commonly occur in discussions about HIV 
serostatus. Participants could pick a virtual character (i.e., an avatar) and role-play various disclosure scenarios with 
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the virtual reality program. Some participants found the tool acceptable but some found it unnecessarily complex and 
cumbersome to use. A randomized trial is planned to test the effect of this AI tool, delivered online versus in a clinic 
setting, on HIV viral load and condomless anal sex among young MSM [32]. 

Artificial intelligence has been introduced into the healthcare field as a means of improving the exactness and accuracy 
while reducing the number of time-consuming tasks that require human intervention [7], [33], [34], [35]. Because of its 
ease of use, this innovation could provide a useful tool, allowing for quicker intervention [36]. Various machine learning 
algorithms have been used in clinical datasets and biomedical which have become the area of interest in medical field 
[37]-[40]. This might help in controlling the disadvantages of analytical approaches used currently in risk prediction. 
Here, larger datasets are fed in computer algorithms having many multidimensional variables with high -dimensional 
and nonlinear relationships among clinical features which can make predictions [41] that are data-driven. Machine 
learning applications have been extensively utilized on clinical features for cancer and tumor prognosis prediction, in 
lung cancer and breast cancer. The authors in [42] suggested that Logistic Regression (LR), Gaussian Naive Bayes (GNB), 
Decision Trees (DT), K-nearest Neighbor (KNN), extreme Gradient Boosting (XGB), Random Forest (RF), and others 
when used on data from clinical care of HIV patients, they showed to be effective in modeling viral load and CD4 related 
outcomes. In addition, Xtreme Gradient Boost machine learning [43]-[47] has shown to be effective in prediction of the 
hospitalization outcome of HIV/AIDs patients with marneffei infection. This is through the prediction of mortality and 
high-risk factor found in the talaromycosis population [21]. 

The authors in [48] employed five standard ML algorithms, K nearest neighbor, Decision Tree, GNB, Support Vector 
Machine (SVM), LR, and three ensemble algorithms Gradient Boosting (GB), XGB, and RF to predict the viral load and 
CD4 status of adults living with HIV/AIDS and enrolled in ART care in Ethiopia. Their results showed that extreme 
gradient boost and random forest machine learning algorithms performed better when tested with other machine 
learning models in prediction of viral suppression of individuals enrolled on ART. This showed important connections 
of supervised machine learning in clinical setting. The researchers in [49] used the following algorithms for HIV- related 
risk behaviors: Support Vector Machines (SVM); Logistic regression (LG); Decision Tree (DT); and, Random forests (RF). 
RF indicated good generalizability with future similar samples by proving to be of high predictive accuracy after testing 
data.So far it has been used to predict progression of HIV and ART optimization [50]-[52]. Likewise, researchers in [53] 
have used machine learning in developing a multiscale modelling [54] of the HIV-1 infection in the presence of NRTI 
therapy. 

The U.S preventive services Task force in 2019 issued a grade A recommendation for use of PrEP in people with risk of 
acquiring HIV, noting on improvement of tools to identify potential PrEP candidates. Moreover, several HIV risk scores 
have been identified for women in sub-Sahara Africa [55], [56], [57]. This proved that machine learning improved the 
competence and credibility of HIV risk classification, contrary to risk group and model-based approaches, among both 
men and women and also younger ones (aged 15-24) and older adults. In Eastern Africa, machine learning has been 
used to identify potential candidates for PrEP counseling via an inclusive approach based on sero-different partnerships 
[58]-[60] in epidemic settings of Uganda and Kenya [61]. Researchers in [62] used machine learning [63] in risk score 
identification. ML algorithms employed on data from routine clinical care of HIV patients such as Logistic Regression 
(LR) [64], Gaussian Naive Bayes (GNB) [65], Decision Trees (DT) [66], K-nearest Neighbor (KNN) [67], eXtreme Gradient 
Boosting (XGB) [68], Random Forest (RF), and others were effective to model viral load and CD4-related outcomes [42]. 

Researchers in [69] used machine learning and created a viable machine learning model [70] using a digital survey data 
with interlinking potential utility in directing health resources including PrEP towards area of great potential gain. This 
is by using a guided tool for assessing risk behavior to contacting HIV in South Africa. In addition, researchers in [71] 
used machine learning as a potential utility in a decision making on PrEP by predicting HIV/AIDS knowledge among 
adolescents and young adult population in Peru. This is through the identification of individuals at high risk of HIV and 
low conception on HIV. In recent years, the use of predictive models [72]-[76] has helped in the study of prevention, 
diagnosis and treatment of the HIV/AIDS epidemic. This is facilitated by coming up with new aspects that would be 
more efficient in treatment and management of the epidemic.  

Machine learning can exhibit fairly high level of precision in identifying undiagnosed people living with HIV by learning 
from nation-wide electronic registry data [77]-[81]. These algorithms may assist in the identification of PrEP candidates 
and making decision around PrEP [82]. Moreover, they have shown to be very effective in identifying and prediction 
[83] of HIV risk across both low-income and high-income setting [84]. This has led to facilitation of implementation of 
preventive strategies like Pre-exposure prophylaxis (PrEP) which has shown its effectiveness in prevention of 
transmission of HIV by 100% [85]-[88]. 
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Sometimes ethical issues arise when using individual characteristics for clinical prediction. This is because patients may 
need to consent to using their personal data [89]. Therefore, considerations should be taken to address issues and check 
if the benefits outweigh the risk of harm to the patient. The researchers in [90] and [91] found out that the risk 
prediction tools in HIV based on Centers for Disease Control and the prevention criteria for HIV use, in sexual behaviors 
and STIs, has underated HIV risk among black men who have sex with men. In addition, the authors in [92] assessed the 
performance of the algorithm by race in the Kaiser Permanente study. The results showed the ability to predict [93] HIV 
acquisition among black and white patients. However, most of the application only used variables related to sexual 
orientation and STIs had lower sensitivity for black compared with white patients. This observation is in agreement 
with the studies carried out in [94]-[96].  

Table 2 provides a brief overview of how various machine learning algorithms have been used in PrEP and HIV 
prediction. The purpose of each algorithm, the data source used, and the results achieved are presented.  

Table 2 Machine learning for PrEP and HIV prediction 

Algorithm Purpose Data Source Results 

Logistic 
Regression 

Predicting HIV Risk Electronic Health 
Records 

Achieved an AUC of 0.73 for predicting HIV infection 
within the next year in a cohort of MSM. 

Random Forest Identifying PrEP 
Candidates 

Demographic and 
Behavioral Data 

Achieved an AUC of 0.79 for identifying individuals 
who could benefit from PrEP in a cohort of high-risk 
individuals. 

Deep Neural 
Networks 

Predicting HIV 
Infection 

Clinical and 
Behavioral Data 

Achieved an AUC of 0.85 for predicting HIV infection 
within the next year in a cohort of high-risk 
individuals. 

Support Vector 
Machines 

Identifying HIV-
Infected 
Individuals 

Laboratory and 
Clinical Data 

Achieved a sensitivity of 0.86 and specificity of 0.93 
for identifying HIV-infected individuals in a cohort of 
patients seeking HIV testing. 

Decision Trees Predicting PrEP 
Adherence 

Self-Reported 
Adherence Data 

Achieved an accuracy of 70% for predicting PrEP 
adherence in a cohort of MSM. 

3. Research gaps 

While machine learning has shown promise in the field of PrEP and HIV prediction, there are still several research gaps 
that need to be addressed to improve the development of machine learning models in this area. Some of these gaps 
include: 

 Lack of standardized datasets: Machine learning models require large, standardized datasets to train and 
validate their accuracy. However, there is a lack of standardized datasets in the field of PrEP and HIV prediction, 
which limits the development and comparison of machine learning models. 

 Need for more diverse data sources: Current datasets used for machine learning models in PrEP and HIV 
prediction are often limited to clinical data or self-reported data from individuals. There is a need for more 
diverse data sources, such as data from social media, wearable devices, or electronic health records, to improve 
the accuracy and inclusivity of machine learning models. 

 Limited generalizability of models: Machine learning models developed for PrEP and HIV prediction are often 
trained on data from specific populations or geographic regions, which limits their generalizability to other 
populations or regions. 

 Ethical concerns: The development of machine learning models for PrEP and HIV prediction raises ethical 
concerns regarding privacy, data security, and potential algorithmic bias. Further research is needed to address 
these concerns and ensure the ethical use of machine learning in this area. 

 Lack of interpretability: Many machine learning models are considered "black boxes," meaning that it is difficult 
to understand how the model arrived at its predictions. There is a need for more interpretable machine learning 
models that can help healthcare providers and researchers understand the factors contributing to an 
individual's risk of HIV infection. 

In addition, developing a model for PrEP and HIV can be challenging due to various reasons including: 
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 Complexity of the virus: HIV is a complex virus that mutates rapidly and has multiple strains. Developing a 
model that accurately predicts HIV infection and PrEP efficacy requires a deep understanding of the virus’s 
behavior and evolution. 

 Lack of data: Developing an accurate model for PrEP and HIV requires large amount of data from diverse 
populations. However, there are still many gaps in data collection, particularly in low-income countries and 
among marginalized communities. 

 Ethical considerations: Developing these models requires careful consideration of ethical issues, including 
privacy, confidentiality and informed consent. There is need to balance potential benefits of the model against 
the risk of unintended harm, such as stigmatization or discrimination. 

Table 3 highlights some of the challenges associated with the use of machine learning algorithms in the context of PrEP 
and HIV prediction. The specific challenges may vary depending on the study or dataset. Additionally, some challenges 
may be interdependent and exacerbate each other. 

Table 3 Machine learning-based PrEP and HIV prediction challenges 

Challenge Description 

Lack of 
Standardized 
Data 

Machine learning models require large and standardized datasets to achieve optimal accuracy. 
However, in the context of PrEP and HIV prediction, there is a lack of standardized data, which 
limits the ability to develop and compare machine learning models. 

Limited 
Generalizability 

Machine learning models developed for PrEP and HIV prediction are often trained on data from 
specific populations or geographic regions, which limits their generalizability to other populations 
or regions. 

Data Bias and 
Privacy 
Concerns 

Machine learning algorithms can be influenced by bias in the data used to train them, leading to 
discriminatory outcomes. Moreover, privacy concerns may arise due to the use of sensitive 
information in developing machine learning models. 

Limited 
Interpretability 

Many machine learning models are considered "black boxes," which makes it difficult to 
understand how they arrive at their predictions. This lack of interpretability can make it difficult 
for clinicians and researchers to use the models effectively. 

Data Imbalance HIV is a rare event, which can lead to imbalanced datasets, where there are significantly fewer 
positive cases than negative cases. This can result in machine learning models with poor predictive 
performance. 

Lack of 
Expertise 

Developing and implementing machine learning models requires a high level of expertise in both 
data science and clinical domains. The shortage of such expertise in the healthcare sector can be a 
significant challenge. 

Addressing these research gaps will be critical in advancing the development of machine learning models for PrEP and 
HIV prediction and improving their accuracy and impact on HIV prevention efforts. 

4.  Conclusion 

In recent years, machine learning has shown promising results in the field of PrEP (Pre-exposure prophylaxis) and HIV 
prediction. Machine learning algorithms have the potential to improve the accuracy and speed of predicting individuals 
who are at risk of HIV infection and could benefit from PrEP. By analyzing a wide range of variables such as demographic 
data, behavioral patterns, and clinical markers, machine learning models can identify patterns and correlations that 
may not be apparent to human experts. These models can also continuously learn from new data, improving their 
predictive capabilities over time. The use of machine learning for PrEP and HIV prediction could have a significant 
impact on reducing the spread of HIV and increasing access to PrEP for those who need it the most. However, there are 
also potential challenges and ethical concerns to consider, such as the potential for algorithmic bias and the need for 
privacy and data security. In conclusion, while the use of machine learning for PrEP and HIV prediction is still in its early 
stages, the results so far are promising. Further research and development in this area have the potential to improve 
the accuracy and efficiency of HIV prevention efforts and ultimately help to curb the spread of the virus. 
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