

GSC Biological and Pharmaceutical Sciences

eISSN: 2581-3250 CODEN (USA): GBPSC2 Cross Ref DOI: 10.30574/gscbps Journal homepage: https://gsconlinepress.com/journals/gscbps/

GSC Biological and Pharmaceutical Sciences GSC Online Press INDIA

Check for updates

Hibiscus sabdariffa L. (Traditional Medicine and Food Ingredients)

Marina Silalahi*

Biology Education Department, Faculty of Teacher Training and Education, Universitas Kristen Indonesia. Jl. Mayjen Sutoyo No. 2 Cawang Jakarta Timur.

GSC Biological and Pharmaceutical Sciences, 2024, 29(02), 114-122

Publication history: Received on 20 September 2024; revised on 03 November 2024; accepted on 05 November 2024

Article DOI: https://doi.org/10.30574/gscbps.2024.29.2.0308

Abstract

Hibiscus sabdariffa has been used as food, herbal drinks, and flavoring ingredients in the food and pharmaceutical industries. This study aims to explain the botany, utilization and bioactivity of *H. sabdariffa*. This research was carried out using library research, especially from Google Scholar, using the keywords *H. sabdariffa*, *H. sabdariffa* bioactivity, and *H. sabdariffa* use. The *H. sabdariffa* is a species belonging Malvaceae, which easy found in the yard and has been cultivated. The traditional medicine, *H. sabdariffa* is used to treat digestive disorders, liver disease, fever, hypercholesterolemia, hypertension, obesity, prevention/treatment of cancer, cardiovascular and gout. The use of *H. sabdariffa* as a traditional medicine is related to its bioactivity such as antioxidant, diuretics, anti-microbial, anti-hypercholesterolemia, anti-diabetes mellitus, anti-hypertension, anti-cancer. and hepatoprotective. The bioactivity of *H. sabdariffa* is related to secondary metabolites, especially the anthocyanins delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside. *H. sabdariffa* has great potential to be developed as a nutraceutical to treat hypertension and diabetes mellitus.

Keywords: *Hibiscus sabdariffa*; Anti-hypertension; Diabetes mellitus; Cyanidin-3-O-sambubioside

1. Introduction

Rosella or *H. sabdariffa* is a type of plant that is easily found in the yards in Indonesia. The beautiful of flower structure to be widely used as ornament plant. The *H. sabdariffa* has been used as food coloring; herbal drinks; and flavoring ingredients in the food and pharmaceutical industries [1;2]. The dye produced by H. sabdariffa has been used in the food, cosmetics and pharmaceutical industries [3]. Its use as a food ingredient is related to its nutritional content; so it can be developed as a powerful chemo-preventive agent and natural healthy food [4].

The petal of *H. sabdariffa* is used as diuretic, to treat digestive disorders, liver disease, fever, hypercholesterolemia, hypertension [5], anti-obesity [6;7], prevention/treatment of cancer [7;8], cardiovascular disorders [7] and gout [9]. Healthy men who consumed H. sabdariffa were implicated in significant decreases in the concentrations of creatinine, uric acid, citrate, tartrate, calcium, sodium, potassium, and phosphate in urine [9]. The use of *H. sabdariffa* as a traditional medicine is related to its bioactivity. The extract of *H. sabdariffa* shows activities as antioxidant [3;7]; antimicrobial [3] and anti-cancer [7].

Bioactive compounds of *H. sabdariffa* prevent chronic and degenerative diseases related to oxidative stress. [10]. The bioactivity of H. sabdariffa as an anticancer is related to its secondary metabolite content that induces chemoprevention, selective cytotoxicity, cell cycle arrest, apoptosis, autophagy, and anti-metastasis effects on various types of human cancer cells [11].

^{*} Corresponding author: Marina Silalahi

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

The *H. sabdariffa* has the potential to be developed as a food ingredient because it is rich in nutritional content. The nutrient content of *H. sabdariffa* is organic acids (including citric, malic, tartaric, allo-hydroxycitric), beta carotene, vitamin C, protein, and sugar [7]. The use of *H. sabdariffa* as a food and medicine is related to its bioactive compound content. Hibiscus sabdariffa is rich in polyphenols; especially anthocyanins; polysaccharides and organic acids; so it has great prospect in modern therapeutic use [10]. The therapeutic properties of *H. sabdariffa* are attributed to bioactive compounds from the plant; especially phenolic acids; flavonoids; anthocyanins; and organic acids (citric; hydroxycitric; hibiscus; tartaric; malic; and ascorbic) [12].

To minimize toxic effects, knowledge of the dose that can be tolerated by the body is needed [13]. In the long term, the dose of *H. sabdariffa* causes effects on the testes of mice [9]. *H. sabdariffa* has activity as a diuretic and antihypertensive, so that when consumed it has an impact on lowering blood pressure and the effect is proportional to the dose [13]. This study aims to explain the botany, utilization and bioactivity of *H. sabdariffa*.

2. Methods

The method used in this study is library research. Literature was obtained online; especially from Google Scholar using the keywords *H. sabdariffa*, bioactivities *H. sabdariffa*, and uses *H. sabdariffa*. The results obtained were synthesized so that the botany, utilization and bioactivity of *H. sabdariffa* were explained in a comprehensive manner.

3. Results and Discussion

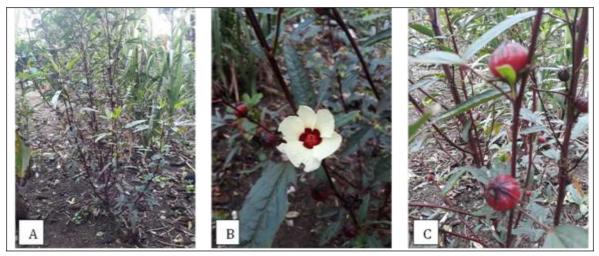


Figure 1 the Rosella or Hibiscus sabdariffa. A. Habitus; B. Flowers are blooming; C. Fruit

3.1. Uses of Hibiscus sabdariffa

3.1.1. Traditional Medicine and Its Bioactivities

The use of *H. sabdariffa* as a traditional medicine has been long time and has developed in line with human civilization. In traditional medicine, rosella calyx extract is used to treat hypertension, liver disorders and fever [9]. The use of plants as traditional medicine is related to their bioactivity. The bioactivity of *H. sabdariffa* has diuretic, choleretic, analgesic, antitussive, antihypertensive, antimicrobial, immunomodulatory, hepatoprotective, antioxidant, and anti-cancer effects [2;12]. The below we will explain further about the bioactivity of *H. sabdariffa* as an antioxidant; anti-kidney stone; antimicrobial; anti-hypercholesterolemia; anti-diabetes mellitus; anti-hypertension; anti-cancer; and hepatoprotective.

3.1.2. Anti-Oxidant

Antioxidant compounds are compounds that can inhibit the formation of free radicals. The bioactivity of *H. sabdariffa* as an antioxidant has been widely reported by Chumsri et al [16]; Zhen et al [17]; Mohd-Esa et al [18]; Farombi & Fakoya [19]; Joven et al [20]; and Fernández-Arroyo et al [21] and Alaa [22]. To make it easier to serve as medicine; especially as an antioxidant; *H. sabdariffa* petals are made into a herbal tea mixture [23]. Bread treated with roselle seeds had reduced lipid oxidation compared to bread treated with BHT [18].

The bioactivity of *H. sabdariffa* as an antioxidant varies depending on the organ; the compound used for the extract and its concentration. The *H. sabdariffa* processing process affects the bioactive content and its bioactivity as an antioxidant. Processing by boiling is the best processing method with the highest nutritional value and polyphenol content [24]. The antioxidant bioactivity of *H. sabdariffa* is associated with the content of phenolic acids; flavonoids [17;18]; anthocyanins; and phenols [16]. Mohd-Esa et al [18] reported that rosella seed extract has the highest antioxidant activity compared to other organs. The ethyl acetate fraction from the ethanol extract of *H. sabdariffa* flowers has higher antioxidant and free radical effects compared to the chloroform fraction [19].

The chloroform fraction and ethyl acetate fraction are better scavengers of O_2^- ; OH and H_2O_2 compared to BHA; quercetin and a-tocopherol [19]. The total phenol content of *H. sabdariffa* was 77.2 mg/g and 87.7 mg/g for water and alcohol; respectively. Antioxidant activity was similar in levels for both rosella alcohol extract and BHT artificial antioxidant (75.67%); the alcohol extract showed the highest reducing ability with a level of 222.60%; iron ion chelation in water and alcohol extracts was 73.97 and 32.29 % at a concentration of 5 mg/ml [22]. Soluble dietary fiber was 0.66 g/L in the beverage; and 66% of the total extractable polyphenols contained in Roselle flowers were passed to the beverage and showed an antioxidant capacity of 335 mol Trolox equivalent/100 mL beverage measured by (2;2-azinobis-(3-etilbenzotiazolin)-6- sulfonate acid)/ABTS [25].

3.1.3. Hepatoprotective

Hepatoprotective compounds are compounds that can restore liver function. The extract of *H. sabdariffa* also demonstrated hepatoprotection by influencing the levels of lipid peroxidation products and liver marker enzymes in experimental hyperammonemia [26]. The antihepatotoxic activity of Hibiscus sabdariffa extract in STZ diabetic rats may be partly related to the antioxidant activity and the presence of flavonoids [27]. The water extract of *H. sabdariffa* given to hepatotoxic mice (induced with paracetamol) orally at a concentration above 200 mg/Kg for five days showed that liver histology and biochemical indices of liver damage returned to normal [9].

The oral administration of *H. sabdariffa* dried flower extract (200 and 300mg/kg body weight) significantly decreased 37% sodium arsenate (SA) and malondialdehyde (MDA) formation in the liver [28]. Protocatechuic acid and anthocyanins from *H. sabdariffa* protect against oxidative damage caused by tertiary-Butyl-hydroperoxide (t-BHP) in rat primary hepatocytes [4]. The aqueous fraction of *H. sabdariffa* petals rich in flavonoids from its methanol extract has anti-hepatotoxic activity in streptozotocin-induced diabetic Wistar rats [27]. Increased levels of aspartate amino transferase (AST); alanine amino transferase (ALT) and alkaline phosphatase (ALP) in the serum of diabetic mice were restored in treated Hibiscus sabdariffa [27].

3.1.4. Anti-Cancer

Cancer is a disease caused by excessive cell division. Plants used as anti-cancer agents produce compounds that can inhibit cancer cell division but do not interfere with normal cells. Protocatechuic acid from *H. sabdariffa* inhibits the carcinogenic action of various chemicals in various rat tissues [26]. The crude extract of *H. sabdariffa* induces chemoprevention; selective cytotoxicity; cell cycle arrest; apoptosis; autophagy; and anti-metastasis effects in various types of human cancer cells [11]. The calyx of *H. sabdariffa* methanol extract showed significant selective activity against leukemia lines (with concentration dependent; cytotoxic and cytocidal effects [29].

High amounts of polyphenol content are associated with inducing strong anticancer effects [11]. The highest contents of phenolics and flavonoids were observed in leaf extract (389.98 and 104.52 mg g-1; respectively) and petal extract (474.09 and 148.35 mg g-1; respectively) [29] *H. sabdariffa* anthocyanins and polyphenols have been proven to cause cancer cell apoptosis; especially in leukemia and gastric cancer. Various extracts of *H. sabdariffa* show activity against atherosclerosis; liver disease; cancer; diabetes and other metabolic syndromes [4].

3.1.5. Anti-Hypertension

Hypertension is a metabolic disorder that results in blood vessel pressure above normal. The use of *H. sabdariffa* as an antihypertensive has been widely reported. The calyx of *H. sabdariffa* extract has demonstrated hypocholesterolemia and antihypertensive properties [23]. *Hibiscus sabdariffa* has been used effectively in traditional medicine for the treatment of hypertension [4]. The infusion *H. sabdariffa* is a very popular drink in various parts of the world and its phytochemicals are associated with antioxidant; hypotensive and anti-atherosclerotic effects [30]. The tea of *H. sabdariffa* is as effective in lowering blood pressure as the commonly used blood pressure medication Captopril; but less effective than Lisinopril [13].

Daily consumption of *H. sabdariffa* tea; in amounts readily incorporated into the diet; lowers blood pressure in pre- and mildly hypertensive adults [23]. In hypertensive and normotensive rats after intravenous injection of 1-125 mg/kg *H. sabdariffa* has negative antihypertensive; hypotensive and chronotropic effects. A significant reduction in arterial pressure was found in hypertensive rats (L-NAME induced) compared with controls [31]. Patients with hypertension receiving two cups of standard tamarind tea every morning for 1 month showed a significant reduction in systolic blood pressure [32]. Administration of *H. sabdariffa* tea reduced systolic blood pressure by 11.2% and diastolic blood pressure by 10.7% in the experimental group 12 days after starting treatment; compared with the first day. Three days after stopping treatment; systolic blood pressure increased by 7.9%; and diastolic blood pressure increased by 5.6% in the experimental and control groups [33].

Hibiscus sabdariffa extract reduces blood pressure in humans and this effect is due to the inhibition of angiotensinconverting enzyme (ACE) activity [2;5] and a direct vasorelaxant effect or modulation of calcium channels [2]. Polyphenols induce beneficial endothelial responses that should be considered in the management of metabolic cardiovascular risk [20]. Water extract of dried petals of Hibiscus sabdariffa contains the anthocyanins delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside with competitive ACE inhibitor activity [5]. Phenolic acids (especially protocatechuic acid); organic acids (hydroxycitric acid) and anthocyanins (delphinidin-3-sambubioside and cyanidin-3-sambubioside) are thought to contribute to the anti-hypertensive effect [2]. *H. sabdariffa* aqueous extract (HSE) is rich in phenolic acids; flavonoids and anthocyanins [4].

The crude methanol extract of *H. sabdariffa* petals (HSE) shows anti-hypertensive effects in humans and experimental animals because it has a vasodilator effect on the aortic ring. This effect may be mediated through the endothelium-derived nitric oxide-cGMP relaxant pathway and inhibition of calcium (Ca^{2+}) influx into vascular smooth muscle cells [34]. The average blood pressure of patients given *H. sabdariffa* extract decreased from 52.2 ± 12.2 to 34.5 ± 9.3 mmHg so that *H. sabdariffa* has a positive effect on type II diabetes patients with mild hypertension [35].

In a randomized clinical trial (RCT); daily consumption of tea or extracts produced from *H. sabdariffa* petals significantly reduced systolic blood pressure (SBP) and diastolic blood pressure (DBP) in adults with pre- to moderate essential hypertension and type 2 diabetes [13]. The hypotensive and anti-cholesterol genic effects relate to the inhibitory effect of anthocyanins on LDL-C oxidation; which inhibits atherosclerosis; and is an important cardiovascular risk factor. The extract *H. sabdariffa* shows promise as a treatment for hypertension and hyperlipidemia [13].

3.1.6. Anti-Diabetes Mellitus

Diabetes mellitus is a metabolic disorder that results in blood glucose levels above normal; therefore anti-diabetic compounds are compounds that can inhibit glucose formation. *H. sabdariffa* bioactivity as an anti-diabetic inhibitor of a-glucosidase and a-amylase [2]. Phenolic acids (especially protocatechuic acid); organic acids (hydroxycitric acid) and anthocyanins (delphinidin-3-sambubioside and cyanidin-3-sambubioside) are associated with anti-diabetes mellitus [2]. The petals *H. sabdariffa* contain chemical compounds (Quercetin; Hibiscetin; Gossypetin; Protocatechuic Acid) which have lower docking scores and better potential as inhibitors of the protein enzyme Phosphoenolpyruvate Carboxycinase (PEPCK) than Metformin (a standard drug for diabetes mellitus) [36].

3.1.7. Anti-Hypercholesterolemia

Hyper-cholestoremia is a condition where blood serum cholesterol levels are above normal which can result in various metabolic disorders in the body. *H. sabdariffa* has long been used as a soft drink and medicinal herb in Taiwan; having been found to reduce blood lipids in animals [26]. The use of *H. sabdariffa* as an anti-hyper-lipidemia has been widely reported; including Hirunpanich et al [37]; Lin et al [26]; Gurrola-Díaz et al [38]; and Gosain et al [39].

Administration of dry extract of rosella flower petals (doses of 500 and 1000 mg/kg for 6 weeks) to hypercholesterolemic mice significantly reduced cholesterol levels (22% and 26% respectively) and triglyceride levels (33% and 28%); blood serum LDL levels. (22% and 32%); but did not affect high density lipoprotein (HDL) levels. The aqueous extract of dried rosella petals has both effects on low density lipoprotein (LDL) oxidation; and hypolipidemic effects in vivo [37].

Clinical trials of *H. sabdariffa* extract using oral capsules caused a significant reduction in serum cholesterol levels after 4 weeks [26]. Patients treated with high density lipoprotein extract had significantly reduced total cholesterol; increased HDL-c; and increased TAG/HDL-c ratio; a marker of insulin resistance [38]. Administration of *H. sabdariffa* ethanol extract (200 mg/kg and 300 mg/kg) to hyperlipidemic mice showed a significant reduction in serum cholesterol levels (18.5% and 22%); serum triglyceride levels (15.6% and 20.6%); serum LDL levels (24% and 30%); and serum very low density lipoprotein (VLDL) levels (15.5% and 20.5%); compared with the cholesterol group. Administration

of *H. sabdariffa* ethanol extract (HSSE) at a concentration of 300 mg/kg is more effective than HSEE at a dose of 200 mg/kg but less effective than the standard drug; atorvastatin [39].

Total cholesterol; low-density lipoprotein cholesterol (LDL-C); and triglycerides were lowered in most normolipidemic; hypolipidemic; and animal models of diabetes; whereas high-density lipoprotein cholesterol (HDL-C) was generally not affected by *H. sabdariffa* extract consumption. Anthocyanins found abundantly in *H. sabdariffa* petals are generally considered to be the phytochemicals responsible for their antihypertensive and hypo-cholesterolemic effects; but evidence has also been provided for the role of hibiscus polyphenols and acids [13].

3.1.8. Anti-Obesity

Obesity is a condition associated with the accumulation of excess fat in the body; energy imbalance; lipogenesis; which increases the mass of adipose tissue through adipogenesis which poses a risk to health [40]. Water extract of Hibiscus sabdariffa petals reduces body weight in animal models of obesity caused by administration of monosodium glutamate. Hibiscus sabdariffa water extract; contains 33.64 mg of total anthocyanins per every 120 mg of extract. Administration of *H. sabdariffa* significantly reduced weight gain in obese mice (orally 120 mg/kg/day for 60 days) and increased fluid intake in healthy individuals and obese mice. Triglyceride and cholesterol levels showed an insignificant decrease in the treated animals with Hibiscus sabdariffa [41].

The toxicity of consuming *H. sabdariffa* is dose dependent and can cause side effects when administered over a long period of time [40]. The bioactivity of *H. sabdariffa* in the treatment of obesity with marked reduction in body weight; inhibition of lipid accumulation and suppression of adipogenesis through the PPAR pathway and other transcription factors [40]. Anthocyanins significantly decrease LDL oxidation; inhibit adipogenesis by regulating adipogenic signaling pathways and transcription factors; and modulate the expression of certain microRNA genes [30].

3.1.9. Anti-Microbial

The aqueous-methanol extract of *H. sabdariffa* has antimicrobial activity [42;43]. The extract of *H. sabdariffa* contains cardiac glycosides; flavonoids; saponins and alkaloids [42]. *H. sabdariffa* extract has antibacterial to *Staphylococcus aureus; Bacillus stearothermophilus; Micrococcus luteus; Serratia mascences; Clostridium sporogenes; Escherichia coli; Klebsiella pneumoniae; Bacillus cereus; and Pseudomonas fluorescence* [42]. The antibacterial activity of rosella extract against *E. coli; S. aureus; S. mutans and Pseudomonas aeruginosa;* showed various levels of inhibition in the organisms tested [22].

Roselle was found to be rich in malic acid; anthocyanins; ascorbic acid and minerals; especially Ca and Fe; but low in glucose [43]. The ethanolic inhibition of roselle extract against *B. subtilis* and *S. aureus* was slightly higher than that of the water extract but this difference was not significant. However; *E. coli* was strongly inhibited by Roselle water extract at concentrations of 25 and 50 mg/mL as determined by the paper disk method [43].

3.1.10. Treat to Kidney Stones

Kidney stones; also known as nephrolithiasis; is a condition where solid deposits form in the kidneys which originate from chemicals in the urine. Plants that are able to treat kidney stones are related to their uricosuric effects [44]. *H. sabdariffa* has been widely used in Traditional Mexican Medicine as an antihypertensive and diuretic [41]. Various plants have long been used to treat kidney stones; such as cat's whiskers and *Strobilanthes crispa*. A cup of tea made from 1.5 g of dried *H. sabdariffa* flower petals was given to subjects twice a day (morning and evening) for 15 days and after drinking it; it showed clearance of uric acid in the kidney stone group [44]. The bioactivity of Hibiscus sabdariffa water extract for treating kidney stones is influenced by its concentration and bioactive compounds [41]. *H. sabdariffa* water extraction contains delphinidin-3-O-sambubioside; cyanidin-3-O-sambubioside; quercetin; routine and acids that cause the release of nitric oxide from the vascular endothelium and promote renal vasorelaxation by increasing renal filtration [41].

3.1.11. Foodstuffs

Plants that can be used as food are plants that have nutritional value. Hibiscus sabdariffa flower drink is widely consumed in Mexico [25] and Indonesia. Rosella flowers contain dietary fiber as the largest component (33.9%) and are rich in phenolic compounds (6.13%) [25]. The main nutritional content of *H. sabdariffa* is glucose (sugar); malic acid (organic acid); tocopherol and linoleic acid (fatty acid) [3]. Rosella seeds are rich in fatty acids such as linoleic/oleic (most abundant); sterols (β -sitosterol; campesterol; -5-avenasterol; cholesterol; and clerosterol); and tocopherol [45].

Ash content (3.15%); crude fat (10.89%) and water content (1.16%) in rosella flower petals (red) samples soaked in ash; while crude fiber content (8.12%); carbohydrate content (79.68%) and protein content (6.64%) are high. Roselle flower petals (green) soaked in wood ash also showed a decrease in ash content (4.45%); crude fat (0.85%); water content (78.91%) [46]. *H. sabdariffa* is very rich in essential minerals and nutrients such as: Iron; copper; calcium; magnesium; manganese necessary for healthy growth in humans. *H. sabdariffa* extract contains tannins (17.0%); saponins (0.96%); phenols (1.1%); glycosides (0.13%); alkaloids (2.14%) and flavonoids (20.08%) [47].

Rosella petals can be considered as a food rich in lutein; chlorogenic acid and anthocyanin (delphinidin 3-sambubioside) [48] and ascorbic acid (vitamin C) [49]. *H. sabdariffa* is also widely used as an additive in food processing so that it can improve the taste of these foods; such as flavoring for sauces; jellies; marmalades and soft drinks or for use as food coloring; and is a promising source of natural red coloring that is soluble in water [50].

Food ingredients added with *H. sabdariffa* extract have more attractive colors and last longer [3]. Anthocyanin; which is a natural water-soluble flavonoid pigment [50]. Anthocyanins in H. sabdariffa petals contain delphinidin-3-sambubioside; cynidin-3-sambubioside; delphinidin-3-monoglucoside and cynidin-3-monoglucoside [50] which is thought to be related to the color content. The compound 5-(Hydroxymethyl) furfural is the most abundant non-anthocyanin compound; while delphinidin-3-O-sambubioside is the main anthocyanin in both extracts [3]. Other ingredients in *H. sabdariffa* are carotenoids (all-trans-lutein and all-trans- β -carotene); phenolics (delphinidin 3-sambubioside; 3-caffeoylquinic acid). The phenolic content of rosella petals is almost 60% (w/w) [48]. Two main anthocyanins are found in cold and hot extracts: delphynidin-3-sambubioside and cyanidin-3-sambubioside [51]. The degradation rate of delphinidin 3-O-sambubioside is higher than cyanidin 3-O-sambubioside [52]. In general; cold and hot extraction yield similar phytochemicals but; under cold extraction; color degradation is significantly lower and extraction time is 15-fold longer [51]. The quality of *H. sabdariffa* petals depends on the main ingredients; namely delphinidin-3-sambubioside [53].

4. Conclusion

- In traditional medicine; *H. sabdariffa* is used to treat digestive disorders; liver disease; fever; hypercholesterolemia; hypertension; obesity; prevention/treatment of cancer; cardiovascular and gout.
- The use of *H. sabdariffa* as a traditional medicine is related to its bioactivity; including as an antioxidant; antikidney stone; anti-microbial; anti-hypercholesterolemia; anti-diabetes mellitus. anti-hypertension; anticancer; and hepatoprotective.
- The bioactivity of *H. sabdariffa* is related to the content of secondary metabolites; especially the anthocyanins delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside

Compliance with ethical standards

Acknowledgments

I appreciation to Universitas Kristen Indonesia for research funding.

Disclosure of conflict of interest

There is no conflict of interest in this manuscript.

Statement of ethical approval

There is no animal/human subject involvement in this manuscript.

References

- [1] Islam MM. Food and medicinal values of Roselle (*Hibiscus sabdariffa* L. Linne Malvaceae) plant parts: A review. Open J Nutr Food Sci; 2019; 1(1); 1003.
- [2] Da-Costa-Rocha I; Bonnlaender B; Sievers H; Pischel I; Heinrich M. *Hibiscus sabdariffa* L. A phytochemical and pharmacological review. Food chemistry; 2014; 165; 424-443.
- [3] Jabeur I; Pereira E; Barros L; Calhelha RC; Soković M; Oliveira MBP; Ferreira IC. *Hibiscus sabdariffa* L. as a source of nutrients; bioactive compounds and colouring agents. Food Research International; 2017; 100; 717-723.

- [4] Lin HH; Chen JH; Wang CJ. Chemo-preventive properties and molecular mechanisms of the bioactive compounds in *Hibiscus sabdariffa* Linne. Current medicinal chemistry; 2011; 18(8); 1245-1254.
- [5] Ojeda D; Jiménez-Ferrer E; Zamilpa A; Herrera-Arellano A; Tortoriello J; Alvarez L. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin-and cyanidin-3-O-sambubiosides from *Hibiscus sabdariffa*. Journal of ethnopharmacology; 2010; 127(1); 7-10.
- [6] Alarcon-Aguilar FJ; Zamilpa A; Perez-Garcia MD; Almanza-Perez JC; Romero-Nunez E; Campos-Sepulveda EA; ...
 & Roman-Ramos R. Effect of *Hibiscus sabdariffa* on obesity in MSG mice. Journal of ethnopharmacology; 2007; 114(1); 66-71.
- [7] Singh P; Khan M; Hailemariam H. Nutritional and health importance of *Hibiscus sabdariffa*: a review and indication for research needs. J. Nutr. Health Food Eng; 2017; 6(5); 00212.
- [8] Laskar YB; Mazumder PB. Insight into the molecular evidence supporting the remarkable chemotherapeutic potential of Hibiscus sabdariffa L. Biomedicine & Pharmacotherapy; 2020; 127; 110153.
- [9] Ali BH; Wabel NA; Blunden G. Phytochemical; pharmacological and toxicological aspects of *Hibiscus sabdariffa* L.: a review. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives; 2005; 19(5); 369-375.
- [10] Riaz G; Chopra R. A review on phytochemistry and therapeutic uses of *Hibiscus sabdariffa* L. Biomedicine & Pharmacotherapy; 2018; 102; 575-586.
- [11] Laskar YB; Mazumder PB. Insight into the molecular evidence supporting the remarkable chemotherapeutic potential of *Hibiscus sabdariffa* L. Biomedicine & Pharmacotherapy; 2020; 127; 110153.
- [12] Izquierdo-Vega JA; Arteaga-Badillo DA; Sánchez-Gutiérrez M; Morales-González J A; Vargas-Mendoza N; Gómez-Aldapa CA; Castro-Rosas J; Delgado-Olivares L; Madrigal-Bujaidar E; Madrigal-Santillán E. Organic acids from Roselle (*Hibiscus sabdariffa* L.)-A brief review of its pharmacological effects. Biomedicines; 2020; 8(5); 100.
- [13] Hopkins AL; Lamm MG; Funk JL; Ritenbaugh C. *Hibiscus sabdariffa* L. in the treatment of hypertension and hyperlipidemia: a comprehensive review of animal and human studies. Fitoterapia; 2013; 85; 84-94.
- [14] Christenhusz MJM; Byng; JW. The number of known plants species in the world and its annual increase. Phytotaxa; 2016; 261: 201–217.
- [15] Silalahi M. Buku Materi Pembelajaran Morfologi Tumbuhan. Universitas Kristen Indonesia; 2020.
- [16] Chumsri P; Sirichote A; Itharat A. Studies on the optimum conditions for the extraction and concentration of roselle (*Hibiscus sabdariffa* Linn.) extract. Songklanakarin Journal of Science & Technology; 2008; 30: 133-139;
- [17] Zhen J; Villani TS; Guo Y; Qi Y; Chin K; Pan MH; Ho CT; Simon JE; Wu Q. Phytochemistry; antioxidant capacity; total phenolic content and anti-inflammatory activity of *Hibiscus sabdariff*a leaves. Food chemistry; 2016; 190; 673-680.
- [18] Mohd-Esa N; Hern FS; Ismail A; Yee CL. Antioxidant activity in different parts of roselle (*Hibiscus sabdariffa* L.) extracts and potential exploitation of the seeds. Food chemistry; 2010; 122(4); 1055-1060.
- [19] Farombi EO; Fakoya A. Free radical scavenging and antigenotoxic activities of natural phenolic compounds in dried flowers of *Hibiscus sabdariffa* L. Molecular nutrition & food research; 2005; 49(12); 1120-1128.
- [20] Joven J; March I; Espinel E; Fernández-Arroyo S; Rodríguez-Gallego E; Aragonès; G; Beltran-Debon R; Alonso-Villaverde C; Rios L; Martin-Paredero V; Menendez JA; Micol V; Segura-Carretero A; Camps J. *Hibiscus sabdariffa* extract lowers blood pressure and improves endothelial function. Molecular Nutrition & Food Research; 2014; 58(6); 1374-1378.
- [21] Fernández-Arroyo S; Rodríguez-Medina IC; Beltrán-Debón R; Pasini F; Joven J; Micol V; Segura-Carretero A; Fernández-Gutiérrez A. Quantification of the polyphenolic fraction and in vitro antioxidant and in vivo antihyperlipemic activities of *Hibiscus sabdariffa* aqueous extract. Food research international; 2011; 44(5); 1490-1495.
- [22] Alaa GAH. Antioxidant and antibacterial activities of *Hibiscus sabdariffa* L. extracts. African Journal of Food Science; 2012; 6(21); 506-511.
- [23] McKay DL; Chen CO; Saltzman E; Blumberg JB. *Hibiscus sabdariffa* L. tea (tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. The Journal of nutrition; 2010; 140(2); 298-303.

- [24] Prenesti E; Berto S; Daniele PG; Toso S. Antioxidant power quantification of decoction and cold infusions of *Hibiscus sabdariffa* flowers. Food Chemistry; 2007; 100(2); 433-438.
- [25] Sáyago-Ayerdi SG; Arranz S; Serrano J; Goñi I. Dietary fiber content and associated antioxidant compounds in roselle flower (*Hibiscus sabdariffa* L.) beverage. J. of Agricultural and Food Chemistry; 2007; 55(19); 7886-7890.
- [26] Lin TL; Lin HH; Chen CC; Lin MC; Chou MC; Wang CJ. *Hibiscus sabdariffa* extract reduces serum cholesterol in men and women. Nutrition research; 2007; 27(3); 140-145.
- [27] Adeyemi DO; Ukwenya VO; Obuotor EM; Adewole SO. Anti-hepatotoxic activities of *Hibiscus sabdariffa* L. in animal model of streptozotocin diabetes-induced liver damage. BMC complementary and alternative medicine; 2014; 14(1); 1-11.
- [28] Usoh IF; Akpan EJ; Etim EO; Farombi EO. Antioxidant actions of dried flower extracts of *Hibiscus sabdariffa* L. on sodium arsenite-induced oxidative stress in rats. Pakistan Journal of Nutrition; 2005; 4(3); 135-141.
- [29] Formagio ASN; Ramos DD; Vieira MC; Ramalho SR; Silva MM; Zárate NAH; Foglio MA; Carvalho JE. Phenolic compounds of *Hibiscus sabdariffa* and influence of organic residues on its antioxidant and antitumoral properties. Brazilian Journal of Biology; 2015; 75; 69-76.
- [30] Guardiola S; Mach N. Therapeutic potential of *Hibiscus sabdariffa*: A review of the scientific evidence. Endocrinología y Nutrición (English Edition); 2014; 61(5); 274-295.
- [31] Mojiminiyi FBO; Dikko M; Muhammad BY; Ojobor PD; Ajagbonna OP; Okolo RU; Igbokwe UV; Mojiminiyi UE; Fagbemi MA; Bello SO; Anga TJ. Antihypertensive effect of an aqueous extract of the calyx of *Hibiscus sabdariffa*. Fitoterapia; 2007; 78(4); 292-297.
- [32] Jalalyazdi M; Ramezani J; Izadi-Moud A; Madani-Sani F; Shahlaei S; Ghiasi SS. Effect of *Hibiscus sabdariffa* on blood pressure in patients with stage 1 hypertension. Journal of advanced pharmaceutical technology & research; 2019; 10(3); 107.
- [33] Faraji MH; Tarkhani AH. The effect of sour tea (*Hibiscus sabdariffa*) on essential hypertension. Journal of Ethnopharmacology; 1999; 65(3); 231-236.
- [34] Ajay M; Chai HJ; Mustafa AM; Gilani AH; Mustafa MR. Mechanisms of the anti-hypertensive effect of *Hibiscus* sabdariffa L. calyces. Journal of ethnopharmacology; 2007; 109(3); 388-393.
- [35] Mozaffari-Khosravi H; Jalali-Khanabadi BA; Afkhami-Ardekani M; Fatehi F; Noori-Shadkam M. The effects of sour tea (*Hibiscus sabdariffa*) on hypertension in patients with type II diabetes. Journal of human hypertension; 2009; 23(1); 48-54.
- [36] Bhadra P. In-silico analysis of Roselle (*Hibiscus sabdariffa* L.) for Antidiabetic. Indian Journal of Natural Sciences; 2020; 10(60); 20764-20768.
- [37] Hirunpanich V; Utaipat A; Morales NP; Bunyapraphatsara N; Sato H; Herunsale A; Suthisisang C. Hypocholesterolemic and antioxidant effects of aqueous extracts from the dried calyx of *Hibiscus sabdariffa* L. in hypercholesterolemic rats. Journal of ethnopharmacology; 2006; 103(2); 252-260.
- [38] Gurrola-Díaz CM; García-López PM; Sánchez-Enríquez S; Troyo-Sanromán R; Andrade-González I; Gómez-Leyva JF. Effects of *Hibiscus sabdariffa* extract powder and preventive treatment (diet) on the lipid profiles of patients with metabolic syndrome (MeSy). Phytomedicine; 2010; 17(7); 500-505.
- [39] Gosain S; Ircchiaya R; Sharma PC; Thareja S; Kalra A; Deep A; Bhardwaj TR. Hypolipidemic effect of ethanolic extract from the leaves of *Hibiscus sabdariffa* L. in hyperlipidemic rats. Acta Pol Pharm; 2010; 67(2); 179-184.
- [40] Ojulari OV; Lee SG; Nam JO. Beneficial effects of natural bioactive compounds from *Hibiscus sabdariffa* L. on obesity. Molecules; 2019; 24(1); 210.
- [41] Alarcón-Alonso J; Zamilpa A; Aguilar FA; Herrera-Ruiz M; Tortoriello J; Jimenez-Ferrer E. Pharmacological characterization of the diuretic effect of *Hibiscus sabdariffa* Linn (Malvaceae) extract. Journal of Ethnopharmacology; 2012; 139(3); 751-756.
- [42] Mary T. Cytotoxicity and antibacterial activity of methanolic extract of *Hibiscus sabdariffa*. Journal of Medicinal Plants Research; 2007; 1(1); 009-013.
- [43] Jung E; Kim Y; Joo N. Physicochemical properties and antimicrobial activity of Roselle (*Hibiscus sabdariffa* L.). Journal of the Science of Food and Agriculture; 2013; 93(15); 3769-3776.

- [44] Prasongwatana V; Woottisin S; Sriboonlue P; Kukongviriyapan V. Uricosuric effect of roselle (*Hibiscus sabdariffa*) in normal and renal-stone former subjects. Journal of Ethnopharmacology; 2008; 117(3); 491-495.
- [45] Mohamed R; Fernandez J; Pineda M; Aguilar M. Roselle (*Hibiscus sabdariffa*) seed oil is a rich source of γtocopherol. Journal of food science; 2007; 72(3); S207-S211.
- [46] Adanlawo IG; Ajibade VA. Nutritive value of the two varieties of roselle (*Hibiscus sabdariffa*) calyces soaked with wood ash. Pakistan Journal of Nutrition; 2006; 5(6); 555-557.
- [47] Nkumah OC. Phytochemical analysis and medicinal uses of *Hibiscus sabdariffa*. International journal of Herbal medicine; 2015; 2(6); 16-19.
- [48] Piovesana A; Rodrigues E; Noreña CPZ. Composition analysis of carotenoids and phenolic compounds and antioxidant activity from hibiscus calyces (*Hibiscus sabdariffa* L.) by HPLC-DAD-MS/MS. Phytochemical Analysis; 2019; 30(2); 208-217.
- [49] Ali BH; Mousa HM; El-Mougy S. The effect of a water extract and anthocyanins of *Hibiscus sabdariffa* L. on paracetamol-induced hepatoxicity in rats. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives; 2003; 17(1); 56-59.
- [50] Shruthi VH; Ramachandra CT; Nidoni U; Hiregoudar S; Naik N; Kurubar AR. Roselle (*Hibiscus sabdariffa* L.) as a source of natural colour: a review. Plant Archives; 2016; 16(2); 515-522.
- [51] Ramirez-Rodrigues MM; Plaza ML; Azeredo A; Balaban MO; Marshall MR. Physicochemical and phytochemical properties of cold and hot water extraction from *Hibiscus sabdariffa*. Journal of food science; 2011; 76(3); C428-C435.
- [52] Sinela A; Rawat N; Mertz C; Achir N; Fulcrand H; Dornier M. Anthocyanins degradation during storage of *Hibiscus* sabdariffa extract and evolution of its degradation products. Food Chemistry; 2017; 214; 234-241.
- [53] Juliani HR; Welch CR; Wu Q; Diouf B; Malainy D; Simon JE. Chemistry and quality of hibiscus (*Hibiscus sabdariffa*) for developing the natural-product industry in Senegal. Journal of Food Science; 2009; 74(2); S113-S121