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Abstract 

The PPAR transactivation activity of benzylpyrazole acylsulfonamide derivatives have been quantitatively analyzed in 
terms of 0D- to 2D-Dragon descriptors. This study has provided a rational approach for the development of titled 
derivatives as PPARγ agonists. The descriptors identified in CP-MLR analysis for the PPARγ transactivation activity have 
highlighted the role of atomic properties (mass, electronegativity, van der Waals volumes and polarizability) in terms 
of weighted 2D autocorrelations and BCUT descriptors and electronic content in terms of Galvez charge indices and 
maximal electrotopological positive variation (MAXDP). Additionally, Balaban’s U and centric indices (Uindex and BAC, 
respectively), Lopping centric index (Lop), topological distance between N and O atom and hydrophobicity accounting 
parameter MLOGP have also shown prevalence to optimize the PPARγ transactivation of titled compounds. PLS analysis 
has further confirmed the dominance of the CP‐MLR identified descriptors and applicability domain analysis revealed 
that the suggested model matches the high quality parameters with good fitting power and the capability of assessing 
external data and all of the compounds was within the applicability domain of the proposed model and were evaluated 
correctly. 

Keywords: QSAR; PPAR transactivation; Combinatorial protocol in multiple linear regression (CP-MLR) analysis; 
Dragon descriptors; Benzylpyrazole acylsulfonamides. 

1. Introduction

Elevated plasma glucose in the presence of high endogenous insulin levels is characteristic of type 2 diabetes (T2D). 
T2D is a complex metabolic disorder because insulin resistance and impaired insulin secretion lead to abnormal 
metabolism of glucose, lipids and amino acids. The quality of life of diabetic patients slowly decreases due to developed 
long-term micro- and macro- vascular complications like neuropathy, retinopathy, nephropathy, myocardial infarction, 
stroke, and lower limb amputation as the progression of the disease progresses [1,2]. The prevalence of T2DM in 
developed and developing countries is rising speedily and it is expected that number of diabetics to reach 380 million 
by 2025 [3.4]. Thus in this scenario development of new and safer antidiabetic agents which may lower hemoglobin A1c 
(HbA1c) levels and improve the lipid profile of patients simultaneously is ardently needed [5-8]. 

Peroxisome proliferator-activated receptors (PPARs), belonging to the nuclear receptor superfamily, are ligand 
activated transcription factors. At present three PPAR subtypes, PPAR, PPAR, and PPAR (also known as PPAR), 
have been cloned and characterized. PPARs exert their effects through transcription of a constellation of genes encoding 
proteins. This transcription is ligand dependent and regulates nutrient metabolism, energy homeostasis, and cell 
differentiation. Among the PPAR subtypes the most extensively investigated subtype is PPAR. It is expressed 
predominantly in adipose tissue, in a lesser extent in the intestine, mammary gland, endothelium, liver, skeletal muscle 
and in other tissues throughout the body. PPAR plays a pivotal role in many physiological processes such as 
adipogenesis, glucose and lipid homeostasis, insulin sensitivity, inhibition of inflammatory responses, cell proliferation 
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and promotion of terminal differentiation [9-11]. Introduction of troglitazone, pioglitazone hydrochloride and 
rosiglitazone maleate (the representatives of thiazolidinediones (TZDs)) as insulin sensitizers and the fact that TZDs 
are high-affinity PPAR ligands [12] has opened new avenues for extensive research in the area of antidiabetic drug 
discovery and development [13-15]. 

Efforts were made to indentify novel classes of PPAR ligands, based on several approaches such as PPAR/ dual 
agonists, PPAR/ dual agonists and PPAR// pan agonists, as second-generation insulin sensitizers [13]. Numerous 
reported non-TZD PPAR ligands belonging to different chemical classes are mostly carboxylic acids. A novel class of 
benzylpyrazole acylsulfonamides as non-thiazolidinedione (TZD), non-carboxylic-acid-based selective PPAR agonists 
has been reported by Rikimaru et al. [16]. The aim of present communication is to establish the quantitative 
relationships between the reported activities and molecular descriptors unfolding the substitutional changes in titled 
compounds. 

2. Material and methods 

2.1. Biological actions and theoretical molecular descriptors 

The reported twentyeight benzylpyrazole acylsulfonamides are considered as the data set for this study [16]. The 
structural variations of these analogues are mentioned in Table 1. These derivatives were evaluated for their 
transactivation activity against human PPAR stably expressed in Chinese hamster ovary (CHO) cells. Transactivation 
activities were assessed by a luciferase reporter gene assay using (R)-5-(3-{4-[(2-Furan-2-yl-5-methyl-1,3-oxazol-4-
yl)methoxy]-3-methoxyphenyl}propyl)-1,3-oxazolidine-2,4-dione [17] as the reference PPAR agonist and were 
reported as EC50 and the same are also presented in Table 1 as pEC50 on molar basis. For modeling purpose the data 
set has been sub-divided into training set (for model development) and test set (for external prediction or validation). 
The selection of test set compounds was made using an in-house written randomization program. The test and training 
set compounds are also mentioned in Table 1. 

 

Table 1 Structural variations and reported PPAR transactivation activities of benzylpyrazole acylsulfonamides. 
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aEC50 (the effective concentration for 50% response of a given compound’s intrinsic maximum response) on molar basis, taken from reference [16]; 
bCompound included in test set; cInactive compound, not part of data set; dCompound with uncertain activity, not part of data set. 

 

Table 2 Descriptor classes used for the modeling of PPAR transactivation activity of benzylpyrazole acylsulfonamides. 

S. No.  Descriptor Class (Acronyms)a Definition and Scope 

1 Constitutional (CONST) 

 

Dimensionless or 0D descriptors; independent from molecular 
connectivity and conformations 

2 Topological (TOPO) 2D-descriptor from molecular graphs and independent conformations 

3 
Molecular walk counts (MWC) 

2D-descriptors representing self-returning walk counts of different 
lengths 

4 Modified Burden eigenvalues 
(BCUT)  

 

2D-descriptors representing positive and negative eigenvalues of the 
adjacency matrix, weights of the 

diagonal elements and atoms 

5 Galvez topological charge 
indices (GALVEZ)  

2D-descriptors representing the first 10 eigenvalues of corrected 
adjacency matrix 

6 2D-autocorrelatons  

(2D-AUTO)  

 

Molecular descriptors calculated from the molecular graphs by 
summing the products of atom weights 

of the terminal atoms of all the paths of the considered path length (the 
lag) 

7 
Functional groups (FUN)  

Molecular descriptors based on the counting of the chemical functional 
groups 

8 Atom centered fragments 
(ACF)  

Molecular descriptors based on the counting of 120 atom centered 
fragments, as defined by Ghose-Crippen 

9 
Empirical (EMP) 

1D-descriptors represent the counts of nonsingle bonds, hydrophilic 
groups and ratio of the number of aromatic bonds and total bonds in an 
H-depleted molecule 

10 Properties (PROP)  1D-descriptors representing molecular properties of a molecule 
aReference [19]. 

 

The structures of the all the compounds (listed in Table 1) were drawn in 2D ChemDraw [18] and subjected to energy 
minimization in the MOPAC using the AM1 procedure for closed shell system after converting these into 3D modules. 
The energy minimization was carried out to attain a well defined conformer relationship among the congeners under 
study. The 0D- to 2D-molecular descriptors of titled compounds was computed using DRAGON software [19]. This 
software offers a large number of descriptors corresponding to ten different classes of 0D- to 2D-descriptor modules. 
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The different descriptor classes include the constitutional, topological, molecular walk counts, BCUT descriptors, Galvez 
topological charge indices, 2D-autocorrelations, functional groups, atom-centered fragments, empirical descriptors and 
the properties describing descriptors. These descriptors offer characteristic structural information specific to the 
descriptor class. The definition and scope of these descriptor’s classes is given in Table 2. 

A total number of 484 descriptors, belonging to 0D- to 2D- modules, have been computed to obtain most appropriate 
models describing the biological activity. Prior to model development procedure, all those descriptors that are inter-
correlated beyond 0.90 and showing a correlation of less than 0.1 with the biological endpoints (descriptor versus 
activity, r < 0.1) were excluded. This procedure has reduced the total descriptors from 484 to 107 as relevant ones to 
explain the biological actions of titled compounds. 

2.2. Development and validation of model 

The combinatorial protocol in multiple linear regression (CP-MLR) [20-24] and partial least squares (PLS) [25-27] 
procedures were used in the present work for developing QSAR models. The CP-MLR is a “filter”-based variable 
selection procedure, which employs a combinatorial strategy with MLR to result in selected subset regressions for the 
extraction of diverse structure–activity models, each having unique combination of descriptors from the generated 
dataset of the compounds under study. The embedded filters make the variable selection process efficient and lead to 
unique solution. Fear of “chance correlations” exists where large descriptor pools are used in multilinear QSAR/QSPR 
studies [28,29]. In view of this, to find out any chance correlations associated with the models recognized in CP-MLR, 
each cross-validated model has been subjected to randomization test [30,31] by repeated randomization (100 
simulation runs) of the biological responses. The datasets with randomized response vector have been reassessed by 
multiple regression analysis. The resulting regression equations, if any, with correlation coefficients better than or equal 
to the one corresponding to unscrambled response data were counted. This has been used as a measure to express the 
percent chance correlation of the model under scrutiny. 

Validation of the derived model is necessary to test its prediction and generalization within the study domain. For each 
model, derived by involving n data points, a number of statistical parameters such as r (the multiple correlation 
coefficient), s (the standard deviation), F (the F ratio between the variances of calculated and observed activities), and 
Q2LOO (the cross-validated index from leave-one-out procedure) have been obtained to access its overall statistical 
significance. In case of internal validation, Q2LOO is used as a criterion of both robustness and predictive ability of the 
model. A value greater than 0.5 of Q2 index suggests a statistically significant model. The predictive power of derived 
model is based on test set compounds. The model obtained from training set has a reliable predictive power if the value 
of the r2Test (the squared correlation coefficient between the observed and predicted values of compounds from test set) 
is greater than 0.5. Additional statistical parameters such as, the Akaike’s information criterion, AIC [32,33], the Kubinyi 
function, FIT [34,35] and the Friedman’s lack of fit, LOF [36], have also been calculated to further validate the derived 
models. The AIC takes into account the statistical goodness of fit and the number of parameters that have to be estimated 
to achieve that degree of fit. The FIT, closely related to the F-value, proved to be a useful parameter for assessing the 
quality of the models. A model which is derived in k independent descriptors, its F-value will be more sensitive if k is 
small while it becomes less sensitive if k is large. The FIT, on the other hand, will be less sensitive if k is small whereas 
it becomes more sensitive if k is large. The model that produces the lowest AIC value and highest FIT value is considered 
potentially the most useful and the best. The LOF factor takes into account the number of terms used in the equation 
and is not biased, as are other indicators, toward large number of parameters. 

2.3. Applicability domain 

The usefulness of a model is based on its accurate prediction ability for new congeners. A model is valid only within its 
training domain and new compounds must be assessed as belonging to the domain before the model is applied. The 
applicability domain (AD) is evaluated by the leverage values for each compound [37]. A Williams plot (the plot of 
standardized residuals versus leverage values (h)) is constructed, which can be used for a simple graphical detection of 
both the response outliers (Y outliers) and structurally influential chemicals (X outliers) in the model. In this plot, the 
AD is established inside a squared area within ±x standard deviations and a leverage threshold h*, which is generally 
fixed at 3(k + 1)/n (n is the number of training set compounds and k is the number of model parameters), whereas x = 
2 or 3. If the compounds have a high leverage value (h >h*), then the prediction is not trustworthy. On the other hand, 
when the leverage value of a compound is lower than the threshold value, the probability of accordance between 
predicted and observed values is as high as that for the training set compounds. 
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3. Results and discussion 

3.1. QSAR results 

In multi-descriptor class environment, exploring for best model equation(s) along the descriptor class provides an 
opportunity to unravel the phenomenon under investigation. In other words, the concepts embedded in the descriptor 
classes relate the biological actions revealed by the compounds. For the purpose of modeling study, 7 compounds have 
been included in the test set for the validation of the models derived from 19 training set compounds. A total number of 
107 significant descriptors from 0D- to 2D- classes have been subjected to CP-MLR analysis with default “filters” set in 
it. Statistical models in two descriptors have been derived to achieve the best relationship correlating PPAR 
transactivation activity. A total number of seven models in two descriptors, having r2Test> 0.5, were obtained through 
CP-MLR. The selected models in two descriptors are given below. 

pEC50 = 6.337 + 1.221(0.229)BELm5 + 1.017(0.225)JGI4   

n = 19, r = 0.871, s = 0.291, F = 25.371, Q2LOO = 0.658, Q2L5O = 0.663 

r2Test = 0.549, FIT = 2.206, LOF = 0.114, AIC = 0.116             (1) 

pEC50 = 6.319 + 1.342(0.254)BELm5 + 0.810(0.218)JGI2   

n = 19, r = 0.841, s = 0.321, F = 19.337, Q2LOO = 0.594, Q2L5O = 0.594 

r2Test = 0.503, FIT = 1.681, LOF = 0.139, AIC = 0.142             (2) 

pEC50 = 6.387 + 1.080(0.265)BELm5 + 1.055(0.300)GGI4   

n = 19, r = 0.831, s = 0.330, F = 17.991, Q2LOO = 0.597, Q2L5O = 0.583 

r2Test = 0.680, FIT = 1.564, LOF = 0.147, AIC = 0.149             (3) 

pEC50 = 6.405 + 1.189(0.276)BELm5 + 0.836(0.274)GGI2   

n = 19, r = 0.809, s = 0.349, F = 15.186, Q2LOO = 0.538, Q2L5O = 0.501 

r2Test = 0.597, FIT = 1.320, LOF = 0.165, AIC = 0.167             (4) 

where n, r, s and F represent respectively the number of data points,  the multiple correlation coefficient, the standard 
deviation and the F-ratio between the variances of calculated and observed activities. In above and all follow-up 
regression equations, the values given in the parentheses are the standard errors of the regression coefficients. The 
signs of the regression coefficients suggest the direction of influence of explanatory variables in the models. The positive 
regression coefficient associated to a descriptor will augment the activity profile of a compound while the negative 
coefficient will cause detrimental effect to it. In the randomization study (100 simulations per model), none of the 
identified models has shown any chance correlation. 

Most of the descriptors GGI2, GGI4, JGI2 and JGI4 participated in above models are from the GALVEZ class and the 
remained one BELm5 is the modified Burden eigenvalue (BCUT class descriptor). All the descriptors have shown 
positive influence on the activity as evident from the signs of regression coefficients. Thus a higher value of Galvez 
descriptors GGI2 (2nd order topological charge index), GGI4 (4th order topological charge index), JGI2 (2nd order mean 
topological charge index) and JGI4 (4th order mean topological charge index) in addition to a higher value of the lowest 
eigenvalue n.5 of Burden matrix/weighted by atomic masses (descriptor BELm5) would be beneficiary to the activity.  

The two descriptor models could estimate nearly 76% in observed activity of the compounds. Considering the number 
of observation in the dataset, models with up to three descriptors were explored. It has resulted in 21 three-parameter 
models with test set r2> 0.50. These models (with 107 descriptors) were identified in CP-MLR by successively 
incrementing the filter-3 with increasing number of descriptors (per equation). For this, the optimum r-bar value of the 
preceding level model (=0.854) has been used as the new threshold of filter-3 for the next generation. These models 
have shared 26 descriptors among them. All these 26 descriptors along with their brief meaning, average regression 
coefficients, and total incidence are listed in Table 3, which will serve as a measure of their estimate across these models.  
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Table 3 Identified descriptorsa along with their class, average regression coefficient and incidenceb, in modeling the 
PPAR transactivation activities of benzylpyrazole acylsulfonamides. 

Descriptor class Average regression coefficient  and (incidence) 

Topological descriptors (TOPO): 

 

HNar, -0.692(1); MAXDP, 0.941(2); BAC, 1.180(2);  

Lop, 1.714(10); Uindex, 1.527(1); BIC3, 0.678(1); 

T(N..O),-0.778(3) 

Modified Burden Eigen values 
(BCUT): 

BELm5, 1.069(6); BEHv2, 0.986(6); BELv8, 1.368(1); 

BEHm3, 0.659(1) 

Galvez Topological charge 

indices (GALVEZ): 

GGI2, 0.621(1); GGI4, 0.885(4); GGI7, 0.659(1); 

JGI2, 0.517(1); JGI4, 0.825(4); JGT, 0.583(1) 

2D autocorrelations 

(2D-AUTO): 

MATS8m, -0.765(2); MATS4v, 0.890(6); MATS3e, 1.538(2); 

MATS3p, -0.690(1); MATS5p, -1.079(1); GATS5p, 0.603(2) 

Functional groups (FUNC): nCrH2, -0.856(1) 

Empirical descriptors (EMP): Hy, -7.354(1) 

Properties (PROP): MLOGP, 0.523(1) 
aThe descriptors are identified from the three parameter models for PPARγ binding activity transactivation activity emerged from CP-MLR protocol 
with filter-1 as 0.3, filter-2 as 2.0, filter-3 as 0.854 and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 19 compounds. bThe average regression coefficient 
of the descriptor corresponding to all models and the total number of its incidence. The arithmetic sign of the coefficient represents the actual sign of 
the regression coefficient in the models. TOPO: HNar, Narumi harmonic index; MAXDP, maximal electrotopological positive variation; BAC, Balaban 
centric index; Lop, Lopping centric index; Uindex, Balaban U index; BIC3, bond information content of 3rd order neighborhood symmetry; T(N..O), 
sum of topological distances between N..O; BCUT: BEHm3, highest eigenvalue n.3 of Burden matrix/weighted by atomic masses; BELm5, lowest 
eigenvalue n.5 of Burden matrix/weighted by atomic masses; BEHv2, highest eigenvalue n.2 of Burden matrix/weighted by van der Waals volumes; 
BELv8, lowest eigenvalue n.8 of Burden matrix/weighted by van der Waals  volumes; GALVEZ: GGI2, topological charge index of order 2; GGI4, 
topological charge index of order 4; GGI7, topological charge index of order 7; JGI2, mean topological charge index of order 2; JGI4, mean topological 
charge index of order 4; JGT, global topological charge index; 2D-AUTO: MATS8m, Moran autocorrelation of lag-8/ weighted by atomic masses; 
MATS4v, Moran autocorrelation of lag-4/ weighted by atomic van der Waals  volumes; MATS3e, Moran autocorrelation of lag-3/ weighted by atomic 
Sanderson electronegativities; MATS3p, Moran autocorrelation of lag-3/weighted by atomic polarizabilities; MATS5p, Moran autocorrelation of lag-
5/ weighted by atomic polarizabilities; GATS5p, Geary autocorrelation of lag-5/ weighted by atomic polarizabilities; FUNC: nCrH2, number of ring 
secondary C(sp3); EMP: Hy, hydrophilic factor; PROP: MLOGP, Moriguchi octanol-water partition coefficient (logP). 

 
Following are the selected three-descriptor models for the PPAR transactivation activities of benzylpyrazole 
acylsulfonamides emerged through CP-MLR. 

pEC50 = 5.456 + 1.120(0.297)MAXDP + 1.679(0.208)Lop + 0.807(0.169)JGI4   

n = 19, r = 0.936, s = 0.215, F = 35.559, Q2LOO = 0.718, Q2L5O = 0.606 

r2Test = 0.523, FIT = 3.809, LOF = 0.078, AIC = 0.071             (5) 

pEC50 = 6.380 + 1.267(0.185)Lop – 0.583(0.222)T(N..O) + 1.022(0.208)GGI4   

n = 19, r = 0.927, s = 0.229, F = 30.866, Q2LOO = 0.760, Q2L5O = 0.733 

r2Test = 0.512, FIT = 3.307, LOF = 0.088, AIC = 0.080             (6) 

pEC50 = 5.986 + 1.243(0.193)Lop + 0.894(0.228)GGI4 + 0.523(0.235)MLOGP   

n = 19, r = 0.920, s = 0.240, F = 27.678, Q2LOO = 0.704, Q2L5O = 0.631 

r2Test = 0.532, FIT = 2.965, LOF = 0.097, AIC = 0.088             (7) 

pEC50 = 5.683 + 0.761(0.349)MAXDP + 1.560(0.241)Lop + 0.892(0.230)GGI4   

n = 19, r = 0.919, s = 0.241, F = 27.382, Q2LOO = 0.685, Q2L5O = 0.773 

r2Test = 0.556, FIT = 2.933, LOF = 0.098, AIC = 0.089             (8) 

These models have accounted for nearly 88% variance in the observed activities. In the randomization study (100 
simulations per model), none of the identified models has shown any chance correlation. The values greater than 0.5 of 
Q2 index is in accordance to a reasonable robust QSAR model. The pEC50 values of training set compounds calculated 
using Eqs. (5) to (8) and predicted from LOO procedure have been included in Table 4.  
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Table 4 Observed and modeled PPAR transactivation activity of benzylpyrazole acylsulfonamides. 

S.  

No. 

pEC50(M)a 

Obsdb 

 Eq. (5)  Eq. (6)  Eq. (7)  Eq. (8)  PLS 

 Calc Predc  Calc Predc  Calc Predc  Calc Predc  Calc Predc 

1 6.35  6.48 7.08  6.89 7.09  6.61 6.86  6.46 7.05  6.57 6.64 

2d 6.8  6.91 -d  7.09 -d  6.87 -d  6.84 -d  6.85 -d 

3 7.8  7.70 7.69  7.57 7.53  7.54 7.50  7.65 7.62  7.58 7.55 

4 7.4  7.57 7.58  7.48 7.49  7.38 7.37  7.46 7.47  7.24 7.22 

5d 7.68  7.81 -d  7.65 -d  7.69 -d  7.81 -d  7.84 -d 

6 7.77  7.93 7.95  7.75 7.75  7.69 7.68  7.78 7.78  7.62 7.61 

7 6.82  6.86 6.89  6.67 6.60  6.72 6.67  6.81 6.80  6.87 6.88 

8 6.96  6.63 6.49  6.67 6.54  6.73 6.63  6.65 6.52  6.69 6.60 

9 6.59  6.64 6.67  6.73 6.80  6.77 6.85  6.72 6.78  6.66 6.68 

10 8.12  7.79 7.68  7.66 7.58  7.70 7.61  7.80 7.69  7.73 7.62 

11d 7.51  7.76 -d  7.40 -d  7.38 -d  7.78 -d  7.46 -d 

12d 7.85  7.43 -d  7.46 -d  7.61 -d  7.59 -d  7.57 -d 

13 6.92  7.42 7.53  7.00 7.11  7.29 7.35  7.58 7.68  7.33 7.38 

14 7.89  8.12 8.17  8.00 8.01  7.92 7.92  7.89 7.89  7.95 7.96 

15d 7.96  7.62 -d  7.64 -d  7.71 -d  7.65 -d  7.68 -d 

16e -e  -e -e  -e -e  -e -e  -e -e  -e -e 

17e -e  -e -e  -e -e  -e -e  -e -e  -e -e 

18d 7.17  7.54 -d  7.56 -d  7.76 -d  7.69 -d  7.74 -d 

19 7.54  7.57 7.59  7.64 7.68  7.99 8.25  7.80 7.86  7.83 7.97 

20 8.00  7.95 7.94  7.98 7.98  8.01 8.01  8.01 8.01  8.03 8.04 

21d 8.08  8.37 -d  8.42 -d  8.39 -d  8.25 -d  8.38 -d 

22 7.89  7.93 7.94  8.04 8.07  8.05 8.09  7.91 7.91  7.87 7.87 

23 7.70  7.57 7.55  7.57 7.55  7.50 7.47  7.56 7.53  7.63 7.63 

24 8.03  7.81 7.80  7.98 7.98  7.97 7.96  7.92 7.90  8.09 8.09 

25 8.08  8.00 7.99  8.17 8.20  8.12 8.13  8.05 8.04  8.17 8.21 

26 8.05  8.08 8.08  8.01 7.99  7.97 7.87  8.20 8.24  8.05 8.05 

27 8.02  7.99 7.98  8.00 8.00  7.88 7.87  7.80 7.78  8.02 8.02 

28 7.92  7.80 7.78  8.04 8.06  8.02 8.03  7.81 7.80  7.92 7.92 
aOn molar basis; bTaken from ref. [16]; cLeave-one-out (LOO) procedure; dCompound included in test set; eCompound with uncertain activity or 
inactive, not part of data set.  

 
The models (5) to (8) are validated with an external test set of 7 compounds listed in Table 1. The predictions of the test 
set compounds based on external validation are found to be satisfactory as reflected in the test set r2 (r2Test) values and 
the same is reported in Table 4. The plot showing goodness of fit between observed and calculated activities for the 
training and test set compounds is given in Figure 1. 

 



R Parihar and BK Sharma / GSC Advanced Research and Reviews, 2020, 04(02), 009–022 

17 
 

 

Figure 1 Plot of observed and calculated pEC50 values of training- and test-set compounds for PPAR transactivation. 

The newly appeared descriptors in above models, MAXDP, Lop and T(N..O) are topological class descriptors whereas 
MLOGP belongs to properties class. Descriptors MAXDP, Lop and MLOGP have shown positive and descriptor T(N..O) 
negative correlation to the activity. The signs of regression coefficients advocated that higher values of maximal 
electrotopological positive variation (descriptor MAXDP), Lopping centric index (descriptor Lop) and Moriguchi 
octanol-water partition coefficient i.e. logP (descriptor MLOGP) would be incremental to the activity. On the other hand 
a higher value of sum of topological distances between N..O would be deleterious to the activity.  

A partial least square (PLS) analysis has been carried out on these 26 CP-MLR identified descriptors (Table 3) to 
facilitate the development of a “single window” structure–activity model. For the purpose of PLS, the descriptors have 
been autoscaled (zero mean and unit SD) to give each one of them equal weight in the analysis. In the PLS cross-
validation, two components are found to be the optimum for these 10 descriptors and they explained 88.36% variance 
in the activity (r2 = 0.940, Q2LOO = 0.819, s = 0.202, F = 60.955, r2Test = 0.517). The MLR-like PLS coefficients of these 26 
descriptors are given in Table 5. 
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Table 5 PLS and MLR-like PLS models from the descriptors of three parameter CP-MLR models for PPAR 
transactivation activities. 

A: PLS equation 

PLS components  PLS coefficient (s.e.)a 

Component-1  -0.171(0.016) 

Component-2  -0.078(0.021) 

Constant  7.571 

B: MLR-like PLS equation 

S. No. Descriptor 
MLR-like 
coefficientb 

 (f.c.)c Order   S. No. Descriptor 
MLR-like 
coefficientb 

 (f.c.)c Order  

1 HNar -0.149 -0.043 10  14 GGI7 0.116 0.037 12 

2 MAXDP -0.026 -0.006 24  15 JGI2 0.053 0.020 20 

3 BAC 0.156 0.048 9  16 JGI4 0.100 0.033 14 

4 Lop 0.287 0.092 1  17 JGT -0.018 -0.005 25 

5 Uindex 0.194 0.064 5  18 MATS8m -0.204 -0.063 6 

6 BIC3 0.111 0.026 18  19 MATS4v 0.216 0.065 4 

7 T(N..O) -0.151 -0.040 11  20 MATS3e 0.310 0.067 3 

8 BEHm3 0.061 0.019 21  21 MATS3p -0.022 -0.006 23 

9 BELm5 0.272 0.088 2  22 MATS5p -0.006 -0.002 26 

10 BEHv2 -0.111 -0.033 13  23 GATS5p 0.094 0.029 17 

11 BELv8 0.210 0.061 7  24 nCrH2 -0.117 -0.032 15 

12 GGI2 0.068 0.022 19  25 Hy -0.442 -0.016 22 

13 GGI4 0.110 0.031 16  26 MLOGP 0.194 0.053 8 

Constant   6.558 

C: PLS regression statistics  Values  

n  19 

r  0.940 

s  0.202 

F  60.955 

FIT  5.300 

LOF  0.055 

AIC  0.056 

Q2LOO  0.819 

Q2L5O  0.797 

r2Test  0.517 
aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in terms of descriptors for their original values; 
cf.c. is fraction contribution of regression coefficient, computed from the normalized regression coefficients obtained from the autoscaled (zero mean 
and unit s.d.) data. 

 
For the sake of comparison, the plot showing goodness of fit between observed and calculated activities (through PLS 
analysis) for the training and test set compounds is also given in Figure 1. Figure 2 shows a plot of the fraction 
contribution of normalized regression coefficients of these descriptors to the activity. 
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Figure 2 Plot of fraction contribution of MLR-like PLS coefficients (normalized) against 26 CP-MLR identified 
descriptors (Table 4) associated with PPAR transactivation activity of benzylpyrazole acylsulfonamide derivatives 

The PLS analysis has suggested Lop as the most determining descriptor for modeling the activity of the compounds 
(descriptor S. No. 4 in Table 5; Figure 2). The other nine significant descriptors in decreasing order of significance are 
BELm5, MATS3e, MATS4v, Uindex, MATS8m, BELv8, MLOGP, BAC and HNar. Descriptors Lop, BELm5 and MLOGP are 
part of Eqs. (1) to (8) and convey same inference in the PLS model as well.  

It is inferred from the PLS analysis that a higher values of 2D autocorrelation descriptors MATS3e (Moran 
autocorrelation of lag-3/ weighted by atomic Sanderson electronegativities) and MATS4v (Moran autocorrelation of 
lag-4/ weighted by atomic van der Waals volumes), topological descriptors Uindex (Balaban U index) and BAC (Balaban 
centric index); and modified Burden eigenvalue class descriptor BELv8 (lowest eigenvalue n.8 of Burden 
matrix/weighted by van der Waals volumes) would be advantageous to the activity. Based on the similar grounds a 
lower value of Moran autocorrelation of lag-8/ weighted by atomic masses (descriptor MATS8m) and Narumi harmonic 
index (descriptor HNar) will be supportive to the activity. It is also observed that PLS model from the dataset devoid of 
CP-MLR identified 26 descriptors (Table 3) is inferior in explaining the activity of the analogues. 

3.2. Applicability domain (AD) 

On analyzing the model AD in the Williams plot (Figure 3) of the model based on the whole dataset (Table 6), it has 
appeared that none of the compounds were identified as an obvious outlier for the PPAR transactivation activities if 
the limit of normal values for the Y outliers (response outliers) was set as 3 (standard deviation) units. One compound 
listed in Table 1 at S. No. 1 found to have leverage (h) values greater than the threshold leverage (h*) suggesting them 
as chemically influential compounds. For both the training-set and test-set, the suggested model matches the high 
quality parameters with good fitting power and the capability of assessing external data. Furthermore, all of the 
compounds were within the applicability domain of the proposed model and were evaluated correctly. 

Table 6 Models derived for the whole data set (n = 26) for the PPAR transactivation activity in descriptors identified 
through CP-MLR. 

Model r s F Q2LOO Eq. 

pEC50 = 5.430 + 1.259(0.267)MAXDP  

+ 1.583(0.197)Lop + 0.795(0.140)JGI4 
0.905 0.237 33.591 0.756 (5a) 

pEC50 = 6.419 + 1.191(0.189)Lop  

– 0.572(0.219)T(N..O) + 1.029(0.185)GGI4   
0.893 0.251 29.140 0.721 (6a) 

pEC50 = 6.063 + 1.135(0.190)Lop  

+ 0.922(0.199)GGI4 + 0.471(0.189)MLOGP 
0.891 0.254 28.302 0.702 (7a) 

pEC50 = 5.699 + 0.796(0.290)MAXDP  

+ 1.409(0.210)Lop + 0.977(0.186)GGI4   
0.896 0.248 30.001 0.741 (8a) 
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Figure 3 Williams plot for the training-set and test- set compounds for PPAR transactivation activity. The horizontal 
dotted line refers to the residual limit (±3×standard deviation) and the vertical dotted line represents threshold 
leverage h* (= 0.46). 

4. Conclusion 

The PPAR transactivation activity of benzylpyrazole acylsulfonamide derivatives have been quantitatively analyzed in 
terms of 0D- to 2D-Dragon descriptors. This study has provided a rational approach for the development of titled 
derivatives as PPARγ agonists. The descriptors identified in CP-MLR analysis for the PPARγ transactivation activity have 
highlighted the role of atomic properties (mass, electronegativity, van der Waals volumes and polarizability) in terms 
of weighted 2D autocorrelations and BCUT descriptors and electronic content in terms of Galvez charge indices and 
maximal electrotopological positive variation (MAXDP). Additionally, Balaban’s Uand centric indices (Uindex and BAC, 
respectively), Lopping centric index (Lop), topological distance between N..O and hydrophobicity accounting parameter 
MLOGP have also shown prevalence to optimize the PPARγ transactivation of titled compounds. PLS analysis has further 
confirmed the dominance of the CP‐MLR identified descriptors and applicability domain analysis revealed that the 
suggested model matches the high quality parameters with good fitting power and the capability of assessing external 
data and all of the compounds was within the applicability domain of the proposed model and were evaluated correctly. 
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