Gut bacteria and human body; a mini review

Authors

  • Shafi Bhat Ramesa Biochemistry Department, Science College, King Saud University, P.O.Box 22452, Zip code 11495, Riyadh, Saudi Arabia.
  • A Soliman Dina Microbiology Department Science College, King Saud University, P.O.Box 22452, Zip code 11495, Riyadh, Saudi Arabia.
  • A Aljebrin Nora Biochemistry Department, Science College, King Saud University, P.O.Box 22452, Zip code 11495, Riyadh, Saudi Arabia.
  • S Alsuhaibani Leena Biochemistry Department, Science College, King Saud University, P.O.Box 22452, Zip code 11495, Riyadh, Saudi Arabia.
  • M Alotebi Latifah Biochemistry Department, Science College, King Saud University, P.O.Box 22452, Zip code 11495, Riyadh, Saudi Arabia.

DOI:

https://doi.org/10.30574/gscarr.2019.1.1.0001

Keywords:

Gut microbiota, Firmicutes, Bacteroidetes, Gastrointestinal tract

Abstract

Mammalian gastrointestinal tract is inhabited by microbiota right from the birth to old age. This microbial community is host specific and plays a major role in maintaining host physiology, nutritional status and stress response.  Human body is inhabited by 1014 microorganisms in gastrointestinal tract with higher number of gram-positive Firmicutes and the gram-negative Bacteroidetes. Major amount of gut flora are present in colon part where as stomach bear the smallest amount. Balance between body and the resident bacterial population is very important from health point and if disturbed, it can result into various kinds of disease.  This review article will highlights the association of microbiota with the human body along the gastrointestinal tract starting from the mouth, esophagus, stomach, and intestines.

Metrics

Metrics Loading ...

References

Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, de Vos WM, Mercenier A, Nauta A and Garcia-Rodenas CL. (2016). Homeostasis of the gut barrier and potential biomarkers. American journal of physiology Gastrointestinal and liver physiology, 312(3), 171-193.

Wu HJ and Wu E. (2012). The role of gut microbiota in immune homeostasis and autoimmunity. Gut microbes. 3(1), 4-14.

Gagliardi A, Totino V, Cacciotti F, Iebba V, Neroni B, Bonfiglio G, Trancassini M, Passariello C, Pantanella F and Schippa S. (2018). Rebuilding the Gut Microbiota Ecosystem. International journal of environmental research and public health, 15(8), 1679.

Nicholson JK, Holmes E and Wilson ID. (2005). Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol, 3, 431–438.

Bik EM. (2009). Composition and function of the human-associated microbiota. Nutr Rev, 67, 164–171.

Sender R, Fuchs S and Milo R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS Biol, 14(8), e1002533.

Natividad JMM and Verdu EF. (2013). Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacol. Res, 69, 42–51.

den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ and Bakker BM. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res, 54, 2325–2340.

Bäumler AJ and Sperandio V. (2016). Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 535, 85–93.

Gensollen T, Iyer SS, Kasper DL and Blumberg RS. (2016). How colonization by microbiota in early life shapes the immune system. Science, 352, 539–544

Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. (2005). Diversity of the human intestinal microbial flora. Science, 308, 1635–1638.

Berg RD. (1996). The indigenous gastrointestinal microflora. Trends Microbiol, 4, 430–435.

Peterson J, Garges S, Giovanni M, Mcinnes P, Wang L, Schloss JA, et al.( 2009) The NIH human microbiome project. Genome Res, 19, 2317–2323.

Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner A C, Yu WH, et al. (2010). The human oral microbiome J Bacteriol. 192, 5002–5017.

Sachdeo A, Haffajee AD and Socransky SS. (2008). Biofilms in the edentulous oral cavity J. Prosthodont, 17, 348–356.

Dale BA and Fredericks LP. (2005). Antimicrobial peptides in the oral environment: expression and function in health and disease Curr. Issues Mol. Biol. 7(2), 119.

Zasloff M. (2002). Antimicrobial peptides of multicellular organisms Nature, 415(6870), 389-395.

Amerongen A and VeermanSaliva E. (2002). The defender of the oral cavity Oral Dis. 8(1), 12-22.

Takeshita T, Kageyama S, Furuta M, Tsuboi H, Takeuchi K, Shibata Y and Yamashita Y. (2016). Bacterial diversity in saliva and oral health-related conditions: The Hisayama Study. Scientific reports, 6, 22164.

Greenstein G and Lamster I. (1997). Bacterial transmission in periodontal diseases: a critical review. J Periodontol, 68, 421–431.

Kaplan JB. (2010). Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res, 89, 205–218.

Loesche WJ. (1986). Role of Streptococcus mutans in human dental decay. Microbiol Rev, 50, 353–380.

Socransky SS, Haffajee AD, Cugini MA, Smith C and Kent R LJr (1998 ) Microbial complexes in subgingival plaque. J Clin Periodontol, 25, 134–144.

Spencer P, Greenman J, McKenzie C, Gafan G, Spratt D and Flanagan A. (2007). In vitro biofilm model for studying tongue flora and malodour. J Appl Microbiol, 103, 985–992.

Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, Huttenhower C and Izard J. (2012). Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol, 13, R42.

Mager DL, Ximenez-Fyvie LA, Haffajee AD and Socransky SS. (2003). Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol, 30, 644–654.

van't Hof W, Veerman EC, Nieuw Amerongen AV and Ligtenberg AJ. (2014)Antimicrobial defense systems in saliva. Monogr Oral Sci, 24, 40–51.

Takahashi N. (2015). Oral Microbiome Metabolism: From “Who are they?” to “What are they doing?” J Dent Res, 94, 1628–1637.

Doel JJ, Hector MP, Amirtham CV et al. (2004). Protective effect of salivary nitrate and microbial nitrate reductase activity against caries. Eur J Oral Sci, 112, 424–428.

Cho I and Blaser MJ. (2012).The human microbiome: at the interface of health and disease. Nat Rev Genet 13, 260–270.

Marsh PD, Head DA and Devine DA. (2014) Prospects of oral disease control in the future – an opinion. J Oral Microbiol, 6, 26176.

Wu J, Peters BA, Dominianni C et al. (2016). Cigarette smoking and the oral microbiome in a large study of American adults. ISME J, 10, 2435–2446.

E Norder Grusell, G Dahlén, M Ruth, L Ny, M Quiding‐Järbrink, H Bergquist and M Bove. (2013). Bacterial flora of the human oral cavity, and the upper and lower esophagus, Diseases of the Esophagus, 26(1), 1, 84–90.

Ajayi TA, Cantrell S, Spann A and Garman KS. (2018). Barrett’s esophagus and esophageal cancer: Links to microbes and the microbiome. PLoS Pathog, 14(12), e1007384.

Pei Z, Bini EJ, Yang L, Zhou M, Francois F and Blaser MJ. (2004). Bacterial biota in the human distal esophagus. Proc. Natl. Acad. Sci. U.S.A, 101, 4250–4255.

Di Pilato V, Freschi G, Ringressi MN, Pallecchi L, Rossolini GM and Bechi P. (2016) The esophageal microbiota in health and disease. Ann N Y Acad Sci, 1381(1), 21-33.

Nardone G and Compare D. (2015). The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United European gastroenterology journal, 3(3), 255-60.

Martin ME and Solnick JV. (2014). The gastric microbial community, Helicobacter pylori colonization, and disease. Gut microbes, 5(3), 345-50.

Swidsinski A, ALadhoff A, Pernthaler S, Swidsinski V, Loening-Baucke M Ortner J, Weber U, Hoffmann S, Schreiber M, Dietel A and H Lochs. (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology, 122, 44-54.

Hooper LV, J Xu PG, Falk T Midtvedt and JI Gordon. ( 1999). A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA, 96, 9833-9838.

Bentley RR. (1982). Meganathan:. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol. Rev 46, 241-280.

Gordon Cooke, John Behan and Mary Costello. Newly identified vitamin K-producing bacteria isolated from the neonatal faecal flora, Microbial Ecology in Health and Disease. 18, 3-4, 133-138.

Bentley R and Meganathan R. (2006) Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev. 1982, 46, 241–80.

Frankel WL, W Zhang, A Singh, DM Klurfeld, S Don, T Sakata, I Modlin and JL Rombeau. (1994). Mediation of the trophic effects of short-chain fatty acids on the rat jejunum and colon. Gastroenterology, 106, 375-380.

Peng LZ He W Chen, IR Holzman and J Lin. (2007). Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr. Res, 61, 37-41.

Robbins GB and Lewis KH. (1940). Fermentation of Sugar Acids by Bacteria. J Bacteriol, 39(4), 399-404.

Valdes Ana M, Walter Jens, Segal Eran and Spector Tim D. (2018). Role of the gut microbiota in nutrition and health BMJ, 361, k2179.

Zhang T, Yang Y, Liang Y, Jiao X and Zhao C. (2018). Beneficial Effect of Intestinal Fermentation of Natural Polysaccharides. Nutrients, 10(8), 1055.

Downloads

Published

2019-11-30

How to Cite

Ramesa, S. B., Dina, A. S., Nora, A. A., Leena, S. A., & Latifah, M. A. (2019). Gut bacteria and human body; a mini review. GSC Advanced Research and Reviews, 1(1), 031–035. https://doi.org/10.30574/gscarr.2019.1.1.0001

Issue

Section

Review Article