Bioactive compounds in some principal mushrooms: An association to adverse effects

Authors

  • González-Quero Natalia National Institute of Toxicology and Forensic Science (INTCF), Biology Service, José Echegaray 4, 28232 Las Rozas de Madrid, Spain.
  • Martínez Pilar National Institute of Toxicology and Forensic Science (INTCF), Biology Service, José Echegaray 4, 28232 Las Rozas de Madrid, Spain.

DOI:

https://doi.org/10.30574/gscarr.2020.5.2.0103

Keywords:

Mushrooms Bioactive Compounds, Adverse Effects, Antioxidant, Anti-Inflammatory, Antiviral, Antitumor

Abstract

Mushrooms are widely used in Asian medicine, both as dietary supplements and as nutraceutical foods. Some principal fungi have recently become popular in Europe for their nutritional and health benefits, and a large number of bioactive compounds have been isolated in several taxa showing antioxidant, anti-inflammatory, antiviral, antitumor activities and other biological properties with great therapeutic application. Separate research has been done separately for the different species. The aim of the present review was to give an overview of the present knowledge regarding bioactive compounds in ten of the most common species, their options in therapeutic use and, for the first time, their possible toxicity or adverse effects. Boletus edulis, Ganoderma lucidum, Grifola frondosa, Hericium erinaceus, Hypsizygus marmoreus, Lentinula edodes, Morchella esculenta, Pleurotus ostreatus, Poria cocos and Trametes versicol have great potential as functional foods and as a source of drugs for pharmaceutical science and medicine. Some adverse effects, however, were found to occur in individual daily consumption and during clinical trials. More research is needed to make a good rational use of these medicinal compounds.

Metrics

Metrics Loading ...

References

Lindequist U, Niedermeyer THJ, Jülich WD. The pharmacological potential of mushrooms. Complementary and Alternative Medicine. 2005; 2:285–299.

Chaturvedi VK, Agarwal S, Gupta KK, Ramteke PW, Singh MP. Medicinal mushroom: boon for therapeutic applications. Biotechnology. 2018; 8(8):334.

Geng P, Siu KC, Wang Z, Wu JY. Antifatigue Functions and Mechanisms of Edible and Medicinal Mushrooms. BioMedical Research. International. 2017; 1–16.

Takur MP, Singh HK.Medicinal Plants. International Journal of Phytomedicine. Rel. Industries. 2013; 5(1): 1.

Rossi P, Difrancia R, Quagliariello V, Savino E, Tralongo P, Randazzo CL, Berretta M, B-glucans from Grifola frondosa and Ganoderma lucidum in breast cancer: an example of complementary and integrative medicine. Oncotarget. 2018; 9(37):24837–24856.

Gao Y, Zhou S, Chen, G, Dai X, Ye J. A phase I/II study of a Ganoderma lucidum (Curt:Fr.) P.Karst.extract (Ganopoly) in patients with advanced cancer. International Journal of Medicinal Mushrooms. 2002; 4:207–14.

Gao Y, Dai X, Chen G, Ye J, Zhou S. A randomized, placebo-controlled, multicenter study of Ganoderma lucidum (W.Curt.Fr.) Lloyd (Aphylloromycetidae) polysaccharides (Ganopoly R) in patients with advanced lung cancer. International Journal of Medicinal Mushrooms. 2003; 5:369–381.

Gordon M, Guralnik M, Kaneko Y, Mimura T, Goodgame J, DeMarzo C, Pierce D, Bake, M, Lang W. A phase II controlled study of a combination of the immune modulator, lentinan, with didanosine (ddI) in HIV patients with CD4 cells of 200-500/mm3. Journal of Medicine. 1995; 26(5-6):193–207.

Ina K, Furuta R, Kataoka T, Kayukawa S, Ina H, Yoneda M. Chemo-Immunotherapy Using Lentinan for the Treatment of Gastric Cancer with Liver Metastases. Medical Science. 2016; 4(2):8.

Zhang Y, Zhang M, Jiang Y, Li X, He Y, Zeng P, Guo Z, Chang Y, Luo H, Liu Y, Hao C, Wang H, Zhang G, Zhang L. Lentinan as an immunotherapeutic for treating lung cancer: a review of 12 years of clinical studies in China. Journal of Cancer Research and Clinical Oncology. 2018; 144(11): 2177–2186.

Kosanić M, Ranković B, Dašić M. Mushrooms as Possible Antioxidant and Antimicrobial Agents Iran. Journal of Pharmacological Research. 2012; 11(4):1095–1102.

Brandt CR, Piraino F.Mushrooms antivirals. Recent. Res. Dev. Antimicrobial Agents and Chemotherapy. 2000; 4:11–26.

Dubost NJ, Beelman R,Peterson DG, Royse DJ. Identification and Quantification of Ergothioneine in Cultivated Mushrooms by Liquid Chromatography-Mass Spectroscopy. International Journal of Medicinal Mushrooms. 2006; 8(3):215–222.

Feng T, Zheng-Hui L, Dong Z-J, Li Y, Liu JK. Non-isoprenoid botryane sesquiterpenoids from basiodiomycete Boletus edulis and their cytotoxic activity. Natural Products and Bioprospecting. 2011; 1:29–32.

Bovi M, Carrizo ME, Capaldi S, Massimilano P, Chiarelli LR, Galliano M, Monaco HL. Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushroom. Glycobiology 2011; 21:1000–1009.

Ren Z, Liu W, Song X, Qi Y, Zhang C, Gao Z, Zhang J, Jia L. Antioxidant and anti-inflammation of enzymatic-hydrolysis residue polysaccharides by Lentinula edodes. International Journal of Biological Macromolecules. 2018; 120:811–822.

Ren G, Xu L, Lu T, Yin J. Structural characterization and antiviral activity of lentinan from Lentinus edodes mycelia against infectious hematopoietic necrosis virus. International Journal of Biological Macromolecules. 2018; 115:1202–1210.

Liu C, Sun Y, Mao Q, Guo X, Li P, Liu Y, Xu N. Characteristics and Antitumor Activity of Morchella esculenta Polysaccharide Extracted by Pulsed Electric Field. International Journal of Molecular Science. 2016; 17(6):986.

Qian Q, Zhou N, Qi P, Zhang Y, Mu X, Shi X, Wang Q. A UHPLC-QTOF-MS/MS method for the simultaneous determination of eight triterpene compounds from Poria cocos (Schw. Wolf) extract in rat plasma: Application to a comparative pharmacokinetic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2018; 1102:34–44.

Scarpari M, Reverberi M, Parroni A, Scala V, Fanelli C, Pietricola C, Zjalic S. et al. Tramesan, a novel polysaccharide from Trametes versicolor. Structural characterization and biological effects. PLoS One 2017; 12(8).

Tsai SH, Tsai HL, Mau JL. Antioxidant properties of Agaricus blazei, Agrocybe cylindracea, and Boletus edulis. LWT. 2007; 40:1392–1402.

Jaworska G, Pogoń K, Skrzypczak A, Bernaś E. Composition and antioxidant properties of wild mushrooms Boletus edulis and Xerocomus badius prepared for consumption. Journal of Food Science and Technology. 2015; 52(12):7944–7953.

Lo YC, Lin SY, Ulziijargal E, Chen SY, Chien RC, Tzou YJ, Mau JL. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. International Journal of Medicinal Mushrooms. 2012; 14(4):357–363.

Wang J, Cao B, Zhao H, Feng J. Emerging Roles of Ganoderma Lucidum in Anti-Aging. Aging and Disease. 2017; 8(6):691–707.

Lin ZB. Focus on antioxidative and free radical scavenging activity of Ganoderma lucidum. Journal of Applied Pharmacology. 2004; 12:133–137.

Chowdhury M, Kubra K, Ahmed S. Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Annals of Clinical Microbiology and Antimicrobials. 2015; 14:8.

Vamanu E. In vitro antimicrobial and antioxidant activities of ethanolic extract of lyophilized mycelium of Pleurotus ostreatus PQMZ91109. Molecules. 2012; 17(4):3653–3671.

Bobek P, Galbavy S. Effect of pleuran (beta-glucan from Pleurotus ostreatus) on the antioxidant status of the organism and on dimethylhydrazine-induced precancerous lesions in rat colon. Br. Journal of Biomedical Science. 2001; 58(3):164–168.

Li W, Cai ZN, Mehmood S, Wang Y, Pan WJ, Zhang WN, Lu YM, Chen Y. Polysaccharide FMP-1 from Morchella esculenta attenuates cellular oxidative damage in human alveolar epithelial A549 cells through PI3K/AKT/Nrf2/HO-1 pathway. International Journal of Biological Macromolecules. 2018; 120 (Pt A):865–875.

Muszyńska B, Grzywacz-Kisielewska A, Kała K, Gdula-Argasińska J. Anti-inflammatory properties of edible mushrooms: A review. Food Chemistry. 2018; 243:373–381.

Lu SY, Peng XR, Dong JR, Yan H, Kong QH, Shi QQ, Li DS, Zhou L, Li ZR, Qiu MH. Aromatic constituents from Ganoderma lucidum and their neuroprotective and anti-inflammatory activities. Fitoterapia. 2019; 134:58–64.

Wu YL, Han F, Luan SS, Ai R, Zhang P, Li H, Chen LX. Triterpenoids from Ganoderma lucidum and Their Potential Anti-inflammatory Effects. Journal of Agriculture and Food Chemistry. 2019; 8, 67(18):5147–5158.

Zhang Y, Mills G, Nair MG. Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa. Journal of Agriculture and Food Chemistry. 2002; 50:7581–7855.

Liu M, Yao W, Zhu Y, Liu H, Zhang J, Jia L. Characterization, antioxidant and antiinflammation of mycelia selenium polysaccharides from Hypsizygus marmoreus SK-03. Carbohydrate Polymers. 2018; 201:566–574.

Li W, Cai ZN, Mehmood S, Liang LL, Liu Y, Zhang HY, Chen Y, Lu YM. Anti-inflammatory effects of Morchella esculenta polysaccharide and its derivatives in fine particulate matter-treated NR8383 cells. International Journal of Biological Macromolecules. 2019; 129:904–915.

Cai TG, Cai Y. Triterpenes from the fungus Poria cocos and their inhibitory activity on nitric oxide production in mouse macrophages via blockade of activating Protein-1 pathway. Chemical Biodiversity. 2011; 8:2135–2143.

El-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N, Shimotohno K, Kawahata T, Otake T. Anti-HIV-1 and HIV-1-protease substances from Ganoderma lucidum. Phytochemistry. 1998; 49 (6):1651–1657.

Wu QP, Xie YZ, Deng Z, Li XM, Yang W, Jiao CW, Fang L, Li SZ et al. Ergosterol Peroxide Isolated from Ganoderma lucidum Abolishes MicroRNA miR-378-Mediated Tumor Cells on Chemoresistance. PLoS One 2012; 7(8).

Nanba H, Kodama N, Schar D, Turner D. Effects of maitake (Grifola frondosa) glucan in HIV-infected patients. Mycoscience. 2000; 41:293–295.

Zhao C, Gao L, Wang C, Liu B, Jin Y, Xing Z. Structural characterization and antiviral activity of a novel heteropolysaccharide isolated from Grifola frondosa against enterovirus 71. Carbohydrate Polymers. 2016; 144:382–389.

Lam SK, Ng TB. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Bioch. Biophys. Res. Comm. 2001; 285:1071–1075.

Suzuki H, Okubo A, Yamazaki S, Suzuki K, Mitsuya H.S. Inhibition of the infectivity and cytopathic effect of human immunodeficiency virus by watersoluble lignin in an extract of the culture medium of Lentinus edodes mycelia (LEM), Biochemical and Biophysical Research Communications. 1989; 160:367–373.

Sarkar S, Koga J, Whitley RJ, Chatterjee S. Antiviral effect of the extract of culture medium of Lentinus edodes mycelia on the replication of herpes simplex virus type 1. Antiviral Research. 1993; 20:293–303.

Tochikura TS, Nakashima H, Hirose K, Yamamoto N. A biological response modifier, PSK, inhibits human immunodeficiency virus infection in vitro. Biochemical and Biophysical Research Communications. 1987; 148:726–733.

Alonso EN, Ferronato MJ, Gandini NA, Fermento ME, Obiol DJ, López Romero A, Arévalo J, Villegas ME, Facchinetti MM, Curino AC. Antitumoral Effects of D-Fraction from Grifola Frondosa (Maitake) Mushroom in Breast Cancer. Nutrition and Cancer. 2017; 69(1):29–43.

Cör D, Knez Ž, Knez Hrnčič M. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A Review. Molecules. 2018; 23(3):649.

Gao Y, Gao H, Chan E, Tang W, Xu A, Yang H, Huang M, Lan J, Li X, Duan W, Xu C, Zhou S. Antitumor activity and underlying mechanisms of ganopoly, the refined polysaccharides extracted from Ganoderma lucidum in mice. Immunological Investigations. 2005; 34(2):171–98.

Kim JW, Kim HI, Kim JH, Kwon OC, Son ES, Lee CS, Park YJ. Effects of Ganodermanondiol, a New Melanogenesis Inhibitor from the Medicinal Mushroom Ganoderma lucidum. International Journal of Molecular Science. 2016; 17(11):1798.

Konno S, Aynehchi S, Dolin DJ, Schwarz AM, Choudhury MS, Tazaki H. Anticancer and hypoglycemic polusaccharides in edible and medicinal mushroom [Grifola frondosa (Dicks.:Fr.) S.F. Gray] International Journal of Medicinal Mushrooms. 2002; 4:185–195.

Lee S, Choi E, Yang SM, Ryoo R, Moon E, Kim SH, Kim KH. Bioactive compounds from sclerotia extract of Poria cocos that control adipocyte and osteoblast differentiation. Bioorganic Chemistry. 2018; 81:27–34.

Lee S, Lee S, Roh HS, Song SS, Ryoo R, Pang C, Baek KH, Kim KH. Cytotoxic Constituents from the Sclerotia of Poria cocos against Human Lung Adenocarcinoma Cells by Inducing Mitochondrial Apoptosis. Cells. 2018; 7(9):E116.

Kodama N, Komuta K, Nanba H. Can maitake MD-fraction aid cancer patients? Alternative Medicine Review. 2002; 7(3):236–239.

Baker M, Lang W. A phase II-controlled study of a combination of the immune modulator, lentinan, with didanosine (ddI) in HIV patients with CD4 cells of 200-500/mm3. Journal of Medicine. 1995; 26(5-6):193–207.

Soares R, Meireles M, Rocha A, Pirraco A, Obiol D, Alonso E, Joos G, Balogh G. Maitake (D fraction) mushroom extract induces apoptosis in breast cancer cells by BAK-1 gene activation. Journal of Medicinal Food. 2011; 14(6):563–572.

Mitomi T, Tsuchiya S, Iijima N, Aso K, Suzuki K, Nishiyama K, et al. Randomized controlled study on adjuvant immunochemotherapy with PSK in curatively resected colorectal cancer. Diseases of the Colon and Rectum. 1992; 35:123–130.

Yang QY. A new biological response modifier PSP. In: Chang ST eds. Mushroom Biology and Mushroom Products. Hong Kong: The Chinese University Press; 1993; p. 247–59.

Nosál'ová V, Bobek P, Cerná S, Galbavý S, Stvrtina S. Effects of pleuran (beta-glucan isolated from Pleurotus ostreatus) on experimental colitis in rats. Physiological Research. 2001; 50(6):575–581.

Jesenak M, Hrubisko M, Majtan J, Rennerova Z, Banovcin P. Anti-allergic effect of Pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Phytotherapy Research. 2014; 28:471–474.

Su CH, Lu TM, Lai MN, Ng LT. Inhibitory potential of Grifola frondosa bioactive fractions on α-amylase and α-glucosidase for management of hyperglycemia. Biotechnology and Applied Biochemistry. 2013; 60(4):446–452.

Ma X, Zhou F, Chen Y, Zhang Y, Hou L, Cao X, Wang C. A polysaccharide from Grifola frondosa relieves insulin resistance of HepG2 cell by Akt-GSK-3 pathway. Glycoconjugate Journal. 2014; 31(5):355–363.

Wesa KM, Cunningham-Rundles S, Klimek VM, Vertosick E, Coleton MI, Yeung KS, Lin H, Nimer S, Cassileth BR. Maitake mushroom extract in myelodysplastic syndromes (MDS): a phase II study. Cancer Immunology and Immunotherapy. 2015; 64(2):237–247.

Kawagishi H, Zhuang C. Compounds for dementia from Hericium erinaceum. Drugs of the Future. 2008; 33(2):149–155.

Li IC, Lee LY, Tzeng TT, Chen WP, Chen YP, Shiao YJ, Chen CC. Neurohealth Properties of Hericium erinaceus mycelia enriched with erinacines. Behaviour and Neurology. 2018; ID 580263.

Tzeng TT, Chen CC, Chen CC, Tsay HJ, Lee LY, Chen WP, Shen CC, Shiao YJ. The Cyanthin Diterpenoid and Sesterterpene Constituents of Hericium erinaceus Mycelium Ameliorate Alzheimer's Disease-Related Pathologies in APP/PS1 Transgenic Mice. International Journal of Molecular Science. 2018; 19(2):E598.

Ueda K, Tsujimori M, Kodani S, Chiba A, Masakazu K, Kazuhiko M, Atsushi S, Kaoru N, Hirokazu K. An endoplasmic reticulum (ER) stress-suppressive compound and its analogues from the mushroom Hericium erinaceum. Bioorganic Medicinal Chemistry. 2018; 16:9467–9470.

Chiu CH, Chyau CC, Chen CC, Lee LY, Chen WP, Liu JL, Lin WH, Mong MC. Erinacine A-Enriched Hericium erinaceus Mycelium Produces Antidepressant-Like Effects through Modulating BDNF/PI3K/Akt/GSK-3β Signaling in Mice. International Journal of Molecular Science. 2018; 19(2): E341.

Akihisa T, Franzblau SG, Tokuda H, Tagata M, Ukiya M, Matsuzawa T, Metori K, Kimura Y, Suzuki T, Yasukawa K. Antitubercular activity and inhibitory effect on Epstein-Barr virus activation of sterols and polyisoprenepolyols from an edible mushroom Hypsizigus marmoreus. Biological and Pharmaceutical Bulletin. 2005; 28:1117–1119.

Chang JS, Son JK, Li G, Oh EJ, Kim JY, Park SH, Bae JT, Kim HJ, Lee IS, Kim OM, Kozukue N, Han JS, Hirose M, Lee KR. Inhibition of cell cycle progression on HepG2 cells by hypsiziprenol A9, isolated from Hypsizigus marmoreus. Cancer Letters. 2004; 212(1):7–14.

Suzuki S, Ohshima S. Influence of shiitake (Lentinus edodes) on human serum cholesterol. Proceedings of the 9th International Scientific Congress on the Cultivation of Edible Fungi, Tokyo. 1974; 9:463–467.

Enman J, Hodge D, Berglund KA, Rova U. Production of the bioactive compound eritadenine by submerged cultivation of shiitake (Lentinus edodes) mycelia. Journal of Agriculture and Food Chemistry. 2008; 56(8):2609–2612.

Nitha B, Fijesh PV, Janardhanan KK. Hepatoprotective activity of cultured mycelium of Morel mushroom, Morchella esculenta. Experimental Toxicology and Pathology. 2013; 65(1-2):105–112.

Cai ZN, Li W, Mehmood S, Pan WJ, Wang Y, Meng FJ, Wang XF, Lu YM, Chen Y. Structural characterization, in vitro and in vivo antioxidant activities of a heteropolysaccharide from the fruiting bodies of Morchella esculenta. Carbohydrate Polymers. 2018; 195:29–38.

Bobek P, Galbavy S. Hypocholesteremic and antiatherogenic effect of oyster mushroom (Pleurotus ostreatus) in rabbits. The Journal Nahrung. 1999; 4:339–342.

Jesenak M, Urbancek S, Majtan J, Banovcin P, Hercogova J. β-Glucan-based cream (containing pleuran isolated from Pleurotus ostreatus) in supportive treatment of mild-to-moderate atopic dermatitis. Journal of Dermatological Treatment. 2016; 27(4):351–354.

Wu K, Guo C, Yang B, Wu X, Wang W. Antihepatotoxic benefits of Poria cocos polysaccharides on acetaminophen-lesioned livers in vivo and in vitro. Journal of Cell Biochemistry. 2019; 120(5):7482–7488.

Ricciardi MR, Licchetta R, Mirabilii S, Scarpari M, Parroni A, Fabbri AA, Cescutti P. et al. Preclinical Antileukemia Activity of Tramesan: A Newly Identified Bioactive Fungal Metabolite. Oxidative Medicine and Cellular Longevity. 2017; Article ID 5061639.

Pallav K, Dowd SE, Villafuerte J, Yang X, Kabbani T, Hansen J. et al. Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers, Gut. Microbes Journal. 2014; 5(4):458–467.

Dreborg S. Skin tests used in type I allergy testing. Position paper. Allergy. 1989; 44 (10): 1–59.

Kozarski M, Klaus A, Niksic M, van Griensven L, Vrivic M, Jakovijevic D. Polysaccharides of higher fungi: biological role, structure and antioxidative activity. Hem. Ind. 2014; 68(3):305–320.

Kozarski M, Klaus A, Jakorvijevic D, Todorovic N, Vunduk J, Petrovic P. et al., Antioxidants of edible mushrooms. Molecules. 2015; 20:19489–19525.

Bashir K, Choi J-S. Clinical and physiological perspectives of beta-blucans: The past, present and future. International Journal of Molecular Science. 2017; 18:1906.

Torricelli R, Johansson SG, Wüthrich B. Ingestive and inhalative allergy to the mushroom Boletus edulis. Allergy 1997; 52:747–751.

Helbling A, Bonadies N, Brander KA Pichler WJ. Boletus edulis: A digestion resistant allergen may be relevant for food allergy. Clinical and Experimental Allergy. 2002; 32:771–775.

Roncarolo D, Minale P, Mistrello G, Voltolini S, Falagiani P. Food allergy to Boletus edulis. Journal of Allergy and Clinical Immunology. 1998; 101:850–851.

Stone TW, Mackay GM, Forrest CM, Clark CJ, Darlington LG. Tryptophan metabolites and brain disorders. Clinical and Chemical Laboratory Medicine. 2003; 41:852–859.

Wanmuang H, Leopairut J, Kositchaiwat C. et al. Fatal fulminant hepatitis associated with Ganoderma lucidum (Lingzhi) mushroom powder. Journal of Medical Association of Thailand. 2007; 90(1):179–181.

Wanachiwanawin D, Piankijagum A, Chaiprasert A. et al. Ganoderma lucidum: a cause of pseudoparasitosis. Southeast Asian Journal of Tropical Medicine and Public Health. 2006; 37(6):1099–1102.

Korpi A, Kasanen JP, Kosma VM, Rylander R, Pasanen AL. Slight respiratory irritation but not inflammation in mice exposed to 1, 3-beta-D-glucan aerosols. Mediators of Inflammation 2003; 12(3):139–146.

Tanaka H, Tsunematsu K, Nakamura N, Suzuki K, Tanaka N, Takeya I, Saikai T, Abe S. Successful treatment of hypersensitivity pneumonitis caused by Grifola frondosa (Maitake) mushroom using a HFA-BDP extra-fine aerosol. Internal Medicine. 2004; 43(8): 737–740.

Gonmori K, Yokoyama K. Acute encephalopathy caused by cyanogenic fungi in 2004, and magic mushroom regulation in Japan. Japanese Journal of Clinincal Toxicology. 2009; 22:61–69.

Levy AM, Kita H, Phillips SF, Schkade PA, Dyer PD, Gleich GJ, Dubravec V.A. Eosinophilia and gastrointestinal symptoms after ingestion of shiitake mushrooms. Journal of Allergy and Clinical Immunology. 1998; 101:613–620.

Zhu, L., Wang, S., Zhang, Z., Zhou, S., Tang, Q., Wu, F., Zhang, JS.Dissolution of Bioactive Components from Dried Fruiting Bodies of the Culinary- Medicinal Shiitake Mushroom, Lentinus edodes (Agaricomycetes), during Cleaning, Soaking, and Cooking. International Journal of Medicinal Mushrooms 2019; 21(1): 37–45.

Fang S, Bajoghli A, Bajoghli M. Shiitake mushroom-induced flagellate dermatitis. Annals of Allergy and Asthma Immunology. 2017; 119(5):462–463.

Maher AM, Ward CE, Pratt M. Shiitake dermatitis after consumption of homemade Soup. Dermatitis. 2018; 29(1):43–44.

Nguyen AH, Gonzaga MI, Lim VM, Adler MJ, Mitkov MV, Cappel MA. Clinical features of shiitake dermatitis: a systematic review. International Journal of Dermatology. 2017; 56(6):610–616.

Didona D, Mostaccioli S, Paolino G, Cantisani C, Caposiena Caro RD, Viti G, Didona B. Shiitake dermatosis in a Caucasian woman. G. Ital. Dermatology and Venereology. 2018; 153(4): 586–588.

Forward E, Chee SN, Smith S.D. A case of shiitake mushroom dermatitis. Journal of Medicinal Food. 2018; 21(2):136–145.

Goikoetxea MJ, Fernández-Benítez M, Sanz ML. Food allergy to Shiitake (Lentinus edodes) manifested as oesophageal symptoms in a patient with probable eosinophilic oesophagitis. Allergy and Immunopathology. 2009; 37:333–334.

Gry J. and Andersson C. Mushrooms traded as food. Vol II (2). Temanord: 507, 309. Nordic Council of Ministers; 2014. p. 471.

Pfab R, Haberl B, Kleber J, Zilker T. Cerebellar effects after consumption of edible morels, Morchella conica and Morchella esculenta. Clinical Toxicology. 2008; 46:249–260.

Saviuc P, Harry P, Pulce C, Garnier R, Cochet A. Can morels (Morchella sp.) induce a toxic neurological síndrome? Clinical Toxicology. 2010; 48:365–372.

Piqueras J. Haemolytic intoxication by mushrooms. In: Plant and Fungi Intoxications. Chapter 31. Masson Ed. Barcelona; 1996; p111–113.

Piqueras J. The toxicity of morels: Facts, myths and hypothesis. A.M. Font I Quer. 2013; 7:32–47.

Cai ZN, Li W, Mehmood S, Pan WJ, Wu QX, Chen Y, Lu YM. Effect of polysaccharide FMP-1 from Morchella esculenta on melanogenesis in B16F10 cells and zebrafish. Food Function. 2018; 9(9):5007–5015.

Al-Deen IHS, Twaij HAA, Al-Badr AA, Istarabadi TAW. Toxicologic and histopathologic studies of Pleurotus ostreatus in mice. Journal of Ethnopharmacy. 1987; 21:297–305.

Juntes P, Rebolj K, Sepcic K, Macek P, Zuzek MC, Cestnik V, Frangez R. Ostreolysin induces sustained contraction of porcine coronary arteries and endothelial dysfunction in middle- and large-size vessels. Toxicon. 2009; 54:784–792.

Berne S, Krizaj I, Pohleven F, Turk T, Macek P, Sepčic K. Pleurotus and Agrocybe hemolysins, new proteins hypothetically involved in fungal fruiting. Biochem. Biophys. Acta 2002; 1570:153–159.

Zuzek MC, Macek P, Sepcic K, Cestnik V, Frangez R. Toxic and lethal effects of ostreolysin, a cytolytic protein from edible oyster mushroom (Pleurotus ostreatus) in rodents. Toxicon. 2006; 48:264–271.

Tomita T, Noguchi K, Mimuro H, Ukaji F, Ito K, Sugawara-Tomita N, Hashimoto Y. Pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex. Journal of Biochemical Chemistry. 2004; 279:26975–26982.

Sepcic K, Berne S, Potrich C, Turk T, Macek P, Menestrina G. Interaction of ostreolysin, a cytolytic protein from the edible mushroom Pleurotus ostreatus, with lipid membranes and modulation of lysopospholipids. European Journal of Biochemistry. 2003; 270:1199–1210.

EFSA, European Commission following an application of Tetrahedron. Safety of synthethic l-ergothioneine as a novel food pursuant to regulation (EC) No 258/97. EFSA-Q-2015-00613; 2016. doi: 10.2093/j.efsa.2016.4629.

Halliwell B, Cheah I. Ergothioneine: The magic in mushrooms; ©2009 [cited 2019 Ap 23]. Available from http://news.nus.edu.sg.

Downloads

Published

2020-11-30

How to Cite

Natalia, G.-Q., & Pilar, M. (2020). Bioactive compounds in some principal mushrooms: An association to adverse effects. GSC Advanced Research and Reviews, 5(2), 031–047. https://doi.org/10.30574/gscarr.2020.5.2.0103

Issue

Section

Original Article