Comparative investigation of sesquiterpene components of essential oils originating from intact plants and hairy root chamomile cultures

Authors

  • Szőke Éva Semmelweis University, Department of Pharmacognosy, Üllői str. 26. H-1085 Budapest; Hungary.
  • Lemberkovics Éva Semmelweis University, Department of Pharmacognosy, Üllői str. 26. H-1085 Budapest; Hungary.

DOI:

https://doi.org/10.30574/gscarr.2021.6.2.0016

Keywords:

Chamomilla recutita, Hairy root cultures, Essential oil: (-)-a-bisabolol, Chamazulene, b-eudesmol, Selinenes, Farnesenes, Cedrol, Geranyl-isovalerate, Berkheyaradulene

Abstract

The importance of chamomile (Chamomilla recutita) inflorescence is widely known in classical and folk medicine, with the largest group of its effective constituents forming the essential oil (chamazulene, a-bisabolol, α-farnesene, trans-β-farnesene, spathulenol, cis/trans-en-in-dicycloethers). Among cultivated species, the Hungarian BK-2 contains more chamazulene in its essential oil than the German Degumil type, which is mainly cultivated for its a-bisabolol. Both components have important antiinflammatory activities.

Wild populations can be easily distinguished from cultivated ones by their high amount of bisaboloides, particularly the flower of Hungarian Szabadkígyós wild type, which contained on average 48 % of the biologically active (-)-a-bisabolol. The population of Szabadkígyós has good salt tolerance which is important owing to global warming, because the proportion of saline areas is increasing worldwide.

To keep the genome of Szabadkígyós having high (-)-a-bisabolol content, Szőke and research team used biotechnological methods.

Sterile plantlets, were infected by Agrobacterium rhizogenes strains #A-4, #15834, #R-1601. The hairy root clones possessing the best growing and biosynthetical potential were multiplied for phytochemical investigations. Pharmacologically important compounds of their essential oils were followed in great detail. The amount of in vitro cultured terpenoids and polyin compounds was compared with that of in vivo plants.

GC-MS studies showed that sterile chamomile cultures generated the most important terpenoid and polyin compounds characteristics of the mother plant. Berkheyaradulene, geranyl-isovalerat and cedrol as new components were identified in these sterile cultures. The main component of hairy root cultures (D/400, D/1, D/100 and Sz/400) was tr-b-farnesene and in addition one new compound: a-selinene was identified. Hairy root culture originated from chamomile collected in Szabadkígyós was intensive increased the essential oil content and pharmacological active compounds: (-) -α-bisabolol and β-eudesmol was also synthetized in large quantity. Furthermore, in vitro organized cultures were made from this population to obtain propagation material containing numerous active substances.

Metrics

Metrics Loading ...

References

Zhi‐Bi H, Min D. Hairy Root and Its Application in Plant Genetic Engineering. JIPB. 2006; 48(2): 121-127.

Szőke É, Kéry Á, Lemberkovics É. (Eds) Herbs and Healing. Pharmacognosy – Phytochemistry – Phytotherapy – Biotechnology [in Hungarian: Gyógynövénytől a gyógyításig. Farmakognózia – Fitokémia – Fitoterápia - Biotechnológia]. Budapest: Semmelweis Kiadó. 2019.

Máthé I. Magyarország Kultúrflórája Vol. VI. A Kamilla (Matricaria chamomilla L.). Budapest: Akadémia Kiadó. 1979.

Petroianu G, Szőke É, Kalász H, Szegi P, Laufer R, Benkő B, Darvas F, Tekes K. Monitoring by HPLC of Chamomile Flavonoids Exposed to Rat Liver Microsomal Metabolism. The Open Medicinal Chemistry Journal. 2009; 3: 1-7.

Vágújfalvi D. Az ásványi táplálkozás hatása a kamilla (Matricaria chamomilla L.) növekedésére és prokamazulén tartalmára. Herba Hung. 1962; 1: 65.

Franz Ch, Kirsch C. Neuere Ergebnisse der Kamillenzüchtung. Dtsch. Apotheker Z. 1985; 125 Suppl. 1: 20-23.

Máday E, Szőke É, Muskáth Zs, Lemberkovics É. A study of the production of essential oils in chamomile hairy root cultures. Eur. J. of Drug Metabolism and Pharmacokinetics. 1999; 24: 303-308.

Franke R, Schilcher H. (Eds) Chamomile: industrial profiles. Boca Raton: CRC Press Taylor and Francis Group. 2005.

Hänsel R, Keller R, Rimpler H, Schneider G. (Hrsg) Hagers Handbuch 4. Chamomilla. Berlin, salzHeidelberg, New York: Springer Verlag. 1992; 817-831.

Schilcher H. Die Kamille. Stuttgart: Wiss Verlagsges. 1987.

Petri G. Medicinal Plants and their Products in Therapy [in Hungarian: Gyógynövények és készítményeik a terápiában]. Budapest: Galenus Publisher. 2006.

Franz C. Influence of ecological factors on field and essential oil of Camomile (Chamomilla recutita (L.) Rausch. syn. Matricaria recutita L.). Acta Hort. 1986; 188: 157-162.

Achterrath-Tuckermann U, Kunde R, Flaskamp E, Isaac O, Thiemer K. Pharmacologische Untersuchungen von Kamillen-Inhaltsstoffen. Planta Med. 1980; 39: 38-50.

Srivastava JK, Gupta S. Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. J. Agricult Food Chem. 2007; 55: 9470-9478.

Gupta V, Mittal P, Bansal P, Khokra SL, Kaushik D. Pharmacological Potential of Matricaria recutita-A Review. Int J PharmaceuticalSci Drug Res 2010; 2 (1): 12–16.

Tyihák E, Kiss I, Máthé I. Untersuchung von Bestanteilen des etherischen Öles wildwachsenden und in gezüchteten Kamillen. Pharm. Zentralhalle. 1963; 102: 128-131.

Sváb J. Matricaria recutita L. In: Bernáth J. (ed) Vadon termő és termesztett gyógynövények. Budapest: Mezőgazdasági Kiadó. 1993; 354-361.

Máthé I. Adatok a kamilla (Matricaria chamomilla L.) proazulén-tartalmának változásához magyarországi termőhelyeken. [Data of change the proazulene-content of chamomile (Matricaria chamomilla L.) in productive areas of Hungary]. Gyógyszerészet. 1960; 4: 269-274.

Franke R, Schilcher H. Relevance and use of chamomile (Matricaria recutita L.) Acta Hortic. 2007; 749: 29–43.

Wagner C, Friedt W, Marquard RA, Ordon F. Molecular analyses on the genetic diversity and inheritance of (α)-bisabolol and chamazulene content in tetraploid chamomile (Chamomilla recutita (L.) Rausch.). Plant Science. 2005; 169: 917–927.

Das M. Chamomile. Medicinal, Biochemical and Agricultural Aspects. In: Traditional Herbal Medicines for Modern Times. Broken Sound Parkway, Boca Raton: CRC Press, Taylor & Francis Group. 2015.

Ruzicka J, Hacek M, Novak J. Mitochondrial relationships between various chamomile accessions. J Appl Genetics. 2021; 62: 73 – 84.

Ahmadi H, Rahimmalek M, Zeinali H. Assessment of the genetic variation of chamomile (Matricaria chamomilla L.) populations using phytochemical, morphological and ISSR markers. Biochem Syst Ecol. 2014; 54: 190–197.

Solouki M, Mehdikhani H, Zeinali H, Emamjomeh AA. Study of genetic diversity in Chamomile (Matricaria chamomilla) based on morphological traits and molecular markers. Sci Hortic. 2008; 117 (3): 281–287.

Pirkhezri M, Hassani EM, Hadian J. Genetic Diversity in Different Populations of Matricaria chamomilla L. Growing in Southwest of Iran, Based on Morphological and RAPD Markers. Research Journal of Medicinal Plant. 2010; 4(1): 1-13.

Salehi K, Nazarian-Firouzabadi F. Assessment of genetic diversity among and within Iranian chamomilepopulations using semi random intron-exon splice junction (ISJ)markers. Journal of Plant Molecular Breeding (JPMB). 2013; 1(2): 40-53.

Schilcher H, Novotny L, Ubik K, Motl O, Herout V. Strukturaufklerung eines dritten Bisabololoxides aus Matricaria chamomilla u. manch spektrometriscen Vergleich der Bisabololoxide A, B, C. Arch. Pharm. 1976; 309: 189-196.

Reichling J, Beiderbeck R. Chamomilla recutita (L.) Rauschert (Camomile): in vitro culture and the production of secondary metabolites. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, Vol. 15. Medicinal and aromatic plants III. Berlin: Springer. 1991; 156–175.

Srivastava NS, Srivastava RAK. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine. 2019; 52: 117-128.

Kato A, Minoshima Y, Yamamoto J, Adachi I, Watson AA, Nash RJ. Protective effects of dietary chamomile tea on diabetic complications. J. Agricult. Food Chem. 2008; 56: 8206-8211.

Srivastava JK, Gupta S. Extraction, Characterization, Stability and Biological Activity of Flavonoids Isolated from Chamomile Flowers. Mol Cell Pharmacol. 2009; 1(3): 138.

Evans S, Dizeyi N, Abrahamsson PA, Persson J. The effect of a novel botani¬cal agent TBS-101 on invasive prostate cancer in animal models. Anticancer Res. 2009; 29(10): 3917–3924.

Zu Y, Yu H, Liang L, Fu Y, Efferth T, Liu X, Wu N. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 Cancer Cells. Molecules. 2010; 15: 3200–3210.

Glowania HJ, Raulin Chr, Swoboda M. The effect of chamomile on wound healing- a controlled clinical-experimental double-blind trial. Zeitschrift für Hautkrankheiten. 1987; 62 (17): 1262-1271.

Szalontai M, Verzár-Petri G, Florian E. Beitrag zur Unterschung der antimykotischen Wirkung biologisch aktiver Komponenten der Matricaria chamomilla L. Parfümerie & Kosmetik. 1977; 58: 121-127.

Hausen BM, Busker E, Carle R. Über das Sensibilisierungsvermögen von Compositenarten. VII. Experimentelle Untersuchungen mit Auszügen und Inhaltstoffen von Chamomilla recutita (L.) Rauschert und Anthemis cotula L. Planta Med. 1984; 50(3): 229-234.

Marczal G, Verzár-Petri G. Essential oil production and composition during the ontogeny in Matricaria chamomilla L. Acta Hort. 1980; 96: 325-329.

Máday E, Tyihák E, Szőke É. Occurrence of formaldehyde in intact and micropropagated chamomile (Matricaria recutita L.) and in its hairy root cultures. Plant Growth Regulation. 2000; 30: 105-110.

Szőke É, Máday E, Marczal G, Lemberkovics É. Analysis of biologically active essentail oil components of Chamomiles in Hungary. Acta Hort. 2003; 597: 275-284.

Szőke É, Máday E, Tyihák E, - Kuzovkina IN, Lemberkovics É. New terpenoids in cultivated and wild chamomile (in vivo and in vitro). Journal of Chromatography B. 2004; 800: 231-238.

Szőke É, Verzár Petri G, Lemberkovics É, Kéry Á. Phytochemical Analysis of Tissue Cultures of the Chamomile (Matricaria chamomilla L.) Grown in the Dark and the Light. Proc.16-th Hung. Ann. Meet. Biochem. 1976; 33-34.

Szők É, Kuzovkina IN, Verzár Petri G, Szmirnov AM. Kultura tkanyej romaski lekarsztvennoj. Fiziol. Raszt. 1977; 24: 832-840.

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962; 15: 473-479.

Szőke É, Máday E, Gershenzon J, Lemberkovics É. Terpenoids in Genetically Transformed Cultures of Chamomile. Chromatographia. 2004; 60: 269-272.

Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exptl. Cell. Res. 1968; 50: 151-158.

Szőke É, Kuzovkina IN, Verzár=Petri, Smirnov AM. Cultivation of wild Chamomile Tissues. Sov. Plant Physiology. 1977; 24 (4): 679-686.

Taiguchi K, Takano H. Micropropagation of Matricaria chamomilla L. (Chamomilae). In: Bajaj YPS (ed.) Biotechnology and Forestry. Berlin: Springer Verlag 1997; 40.

Szőke É, Máday E, Gershenzon J, Allen L, Lemberkovics É. β-Eudesmol, a New Sesquiterpene Component in Intact and Organized Root of Chamomile (Chamomilla recutita). Journal of Chromatographic Science. 2004; 42(5): 229-233.

Ghanavati M, Sengul S. Salinity effect on the germination and some chemical components of Chamomilla recutita L. Asian Journal of Chemistry. 2010; 22(2): 859–866.

Tai Y, Yang X, Yuan Y, Jiang L, Yu D, Hu F. Effects of NaCl stress on seed germination and seedling growth, physiological index and anatomical structure of Matricaria chamomilla. Journal of Plant Resources and Environment. 2013; 22(2): 78–85.

Laxa M, Liebthal M, Telman W, Chibani K, Dietz K-J. The role of the plant antioxidant system in drought tolerance. Antioxidants. 2019; 8 (4): 94.

Cellárová E, Repcáková K, Honcariv R. Salt tolerance of Chamomilla recutita (L.) Rauschert tissue cultures. Biologia Plantarum. 1986; 28(4): 275-279.

Máday E. In vivo and in vitro comparative study of chamomile (Matricaria recutita L.) [Ph.D. Thesis]. Semmelweis University of Medicine. 2000.

Máday E, Szőke É, Muskáth Zs, Lemberkovics É. A study of the production of essential oils in chamomile hairy root cultures. European Journal of Drug Metabolism and Pharmacokinetics. 1999; 24(4): 303-308.

Szőke É, Máday E, Lemberkovics É, Kiss AS, Muskáth Zs. Influence of magnesium on the essential oil production in chamomile cultures. In: Theophanides T. Anastassopoulou J. (eds.) Magnesium: Current Status and New Developments. Dordrecht: Kluwer Academic Publishers. 1997; 407-411.

Szőke É, Máday E, Kiss AS, Lemberkovics É. Effect of Magnesium on Essential Oil Formation of Genetically Transformed and non- Transformed Chamomile Culture. Journal of the American College of Nutrition. 2004; 23(6): 763-767.

Downloads

Published

2021-02-28

How to Cite

Éva, S., & Éva, L. (2021). Comparative investigation of sesquiterpene components of essential oils originating from intact plants and hairy root chamomile cultures. GSC Advanced Research and Reviews, 6(2), 028–049. https://doi.org/10.30574/gscarr.2021.6.2.0016

Issue

Section

Review Article