A review: Development of magnetic nano vectors for biomedical applications
DOI:
https://doi.org/10.30574/gscarr.2021.8.2.0169Keywords:
Biomaterials, Magnetic nanoparticles (MNPs), Biomedical Applications of MNPs, Magnetic resonance imaging (MRI), Drug carriers, HyperthermiaAbstract
The study of magnetic nanoparticles (MNPs) is an emergent field of science in this era due to their widespread utilization in the various fields of biomedical science. Developing concerns of magnetic nanoparticles in the researcher’s field led to design a huge number of MNPs including individual or binary metallic particles, oxides, (ferrites), biopolymer coated composites, metallic carbides and graphene mediated nanoparticles. Numerous synthetic routes are defined in literature to attain the desired size, crystal structure, morphology and magnetic properties. To build up biocompatibility, MNPs subjected to surface treatments by coating with some suitable organic or inorganic biomaterials which not only improves its physical characteristics but also elevate its chemical stability. These biomaterials coat either isolatly or in a combined state to enhance the colloidal stability, magnetic properties as well as prevent it cytotoxicity and surface corrosion in the biological media. These properties are essential for the particles and empowering their effectiveness in various biomedical science i.e., drug delivery Magnetic resonance imaging (MRI), hyperthermia, biosensors and gene therapy etc. Current review recapitulates the verdicts of previous research on the subject of magnetic nanoparticles. It will also explain the recent advancements of biomaterials that execute a dynamic role in various medical treatments. Our main focus is to report the particle types, design and properties as well as discussing various synthetic routes including sol gel, co-precipitation, microemulsion, green synthesis, sonochemical method and polyol synthesis etc. These methods produced particles of excellent yield with unique magnetic properties, coercivity and crystallinity and enhanced biocompatibility as compared to traditional methods used to develop MNPs.
Metrics
References
Frenkel J, Doefman J. Spontaneous and induced magnetisation in ferromagnetic bodies. Nature. 1930 Aug;126(3173):274-5.
Batlle X, Labarta AL. Finite-size effects in fine particles: magnetic and transport properties. Journal of Physics-London-D Applied Physics. 2002 Mar 21;35(6):R15-42.
Chen M, Liu JP, Sun S. One-step synthesis of FePt nanoparticles with tunable size. Journal of the American Chemical Society. 14 Jul 2004; 126(27): 8394-5.
Vazquez M, Luna C, Morales MP, Sanz R, Serna CJ, Mijangos C. Magnetic nanoparticles: synthesis, ordering and properties. Physica B: Condensed Matter. 31 Dec 2004; 354(1-4): 71-9.
Takafuji M, Ide S, Ihara H, Xu Z. Preparation of poly (1-vinylimidazole)- grafted magnetic nanoparticles and their application for removal of metal ions. Chemistry of materials. 18 May 2004; 16(10): 1977-83.
Jeong J, Ha TH, Chung BH. Enhanced reusability of hexa-arginine-tagged esterase immobilized on gold-coated magnetic nanoparticles. Analytica Chimica Acta. 31 May 2006; 569(1-2): 203-9.
Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science. 1 Feb 2006; 61(3): 1027-40.
Jeong U, Teng X, Wang Y, Yang H, Xia Y. Superparamagnetic colloids: controlled synthesis and niche applications. Advanced Materials. 8 Jan 2007;19(1): 33-60.
Salgueiriño‐Maceira V, Correa‐Duarte MA. Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Advanced Materials. Dec 2007; 19(23): 4131-44.
Wu SL, Li G, Yi DD, XIONG F, WU XG, HUANG JG, SI LQ. Study on Properties in Vitro of Fluorouracil Albumin Magnetic Deuto-Microspheres. CHINESE PHARMACEUTICAL JOURNAL-BEIJING-. 2007; 42(8): 598.
Kubo TA, Sugita TA, Shimose SH, Nitta YA, Ikuta Y, Murakami T. Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. International journal of oncology. Aug 2000; 17(2): 309-24.
Zhang YJ, Yao Q, Zhang Y, Cui TY, Li D, Liu W, Lawrence W, Zhang ZD. Solvothermal synthesis of magnetic chains self-assembled by flowerlike cobalt submicrospheres. Crystal Growth and Design. Jul 2008; 8(9): 3206-12.
http://cnbm.amu.edu.pl/en/nanomaterials
Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Advanced drug delivery reviews. 1 Jan 2011; 63(1-2): 24-46.
Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale research letters. Nov 2008; 3(11): 397.
Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews. 17 Aug 2008; 60(11): 1252-65.
Lu AH, Salabas EE, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 12 Feb 2007; 46(8): 1222-44.
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. biomaterials. 1 Jun 2005; 26(18): 3995-4021.
Yang L, Cao Z, Sajja HK, Mao H, Wang L, Geng H, Xu H, Jiang T, Wood WC, Nie S, Wang YA. Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. Journal of biomedical nanotechnology. 1 Dec 2008; 4(4): 439-49.
Hou Y, Gao S. Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties. Journal of Materials Chemistry. 2003; 13(7): 1510-2.
Pankhurst Q, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine: the story so far. Journal of Physics D: Applied Physics. 21 Dec 2016; 49(50).
Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE transactions on nanobioscience. Mar 2004; 3(1): 66-73.
Hong RY, Pan TT, Li HZ. Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids. Journal of Magnetism and Magnetic Materials. 2006 Aug 1; 303(1): 60-8.
Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co- precipitation. Materials Letters. 30 Jun 2011; 65(12): 1882-4.
McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Advanced drug delivery reviews. 17 Aug 2008; 60(11): 1241-51.
Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale research letters. Dec 2012; 7(1): 144.
Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E. Magnetic nanoparticle design for medical applications. Progress in Solid State Chemistry. 1 Jul 2006; 34(2-4): 237-47.
Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature materials. Dec 2004; 3(12): 891.
Patel D, Moon JY, Chang Y, Kim TJ, Lee GH. Poly (D, L-lactide-co- glycolide) coated superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vivo study as MRI contrast agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1 Feb 2008; 313: 91-4.
Jian PE, Fen ZO, Lu LI, Liang TA, Li YU, Wei CH, Hui LI, TANG JB, WU LX. Preparation and characterization of PEG-PEI/Fe3O4 nano-magnetic fluid by co-precipitation method. Transactions of nonferrous metals society of China. Apr 2008; 18(2): 393-8.
Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, Kievit F, Du K, Pullar B, Lee D, Ellenbogen RG, Olson J. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer research. 1 Aug 2009; 69(15): 6200-7.
Hyeon T, Chung Y, Park J, Lee SS, Kim YW, Park BH. Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. The Journal of Physical Chemistry B. 11 Jul 2002; 106(27): 6831-3.
Gao J, Zhang B, Gao Y, Pan Y, Zhang X, Xu B. Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: a simple preparation for multifunctional nanostructures. Journal of the American Chemical Society. 3 Oct 2007; 129(39): 11928-35.
Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B. FePt@ CoS2 yolk− shell nanocrystals as a potent agent to kill HeLa cells. Journal of the American Chemical Society. 7 Feb 2007; 129(5): 1428-33.
Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J. Artificially engineered magnetic nanoparticles for ultra- sensitive molecular imaging. Nature medicine. Jan 2007; 13(1): 95.
Kainz QM, Fernandes S, Eichenseer CM, Besostri F, Körner H, Müller R, Reiser O. Synthesis of functionalized, dispersible carbon-coated cobalt nanoparticles for potential biomedical applications. Faraday discussions. 5 Feb 2015; 175: 27-40.
Stevenson JP, Rutnakornpituk M, Vadala M, Esker AR, Charles SW, Wells S, Dailey JP, Riffle JS. Magnetic cobalt dispersions in poly (dimethylsiloxane) fluids. Journal of magnetism and magnetic materials. 1 Jan 2001; 225(1-2): 47- 58.
Osorio-Cantillo C, Santiago-Miranda AN, Perales-Perez O, Xin Y. Size-and phase-controlled synthesis of cobalt nanoparticles for potential biomedical applications. Journal of Applied Physics. 1 Apr 2012; 111(7): 07B324.
Dailey JP, Phillips JP, Li C, Riffle JS. Synthesis of silicone magnetic fluid for use in eye surgery. Journal of magnetism and magnetic materials. 1 Apr 1999; 194(1-3): 140-8.
Rutnakornpituk M, Baranauskas V, Riffle JS, Connolly J, St Pierre TG, Dailey JP. Polysiloxane fluid dispersions of cobalt nanoparticles in silica spheres for use in ophthalmic applications. Eur. Cells Mater. 2002; 3: 102-5.
Sun S, Murray CB. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. Journal of applied Physics. 15 Apr 1999; 85(8): 4325-30.
Arulmurugan R, Jeyadevan B, Vaidyanathan G, Sendhilnathan S. Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co- precipitation. Journal of Magnetism and Magnetic Materials. 1 Mar 2005; 288: 470-7.
Sharifi I, Shokrollahi H, Amiri S. Ferrite-based magnetic nanofluids used in hyperthermia applications. Journal of magnetism and magnetic materials.1 Mar 2012; 324(6): 903-15.
Upadhyay T, Upadhyay RV, Mehta RV, Aswal VK, Goyal PS. Characterization of a temperature-sensitive magnetic fluid. Physical Review B. 1 Mar 1997; 55(9): 55-85.
Vaidyanathan G, Sendhilnathan S. Synthesis and magnetic properties of Co– Zn magnetic fluid. Journal of Magnetism and Magnetic Materials. 1 Mar 2008; 320(6): 803-5.
Ali MB, El Maalam K, El Moussaoui H, Mounkachi O, Hamedoun M, Masrour R, Hlil EK, Benyoussef A. Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method. Journal of Magnetism and Magnetic Materials. 15 Jan 2016; 398: 20-5.
Arulmurugan R, Vaidyanathan G, Sendhilnathan S, Jeyadevan B. Mn–Zn ferrite nanoparticles for ferrofluid preparation: Study on thermal–magnetic properties. Journal of magnetism and magnetic materials. 1 Mar 2006; 298(2): 83-94.
Soleimani R, Soleimani M, Godarzi MG, Askari A. Preparation of Soft Manganese Ferrite and Inventional of its Magnetic Properties and Mn 55 Nuclear Magnetic Resonance. Journal of fusion energy. 1 Aug 2011; 30(4): 338-41.
Sattar AA. Composition dependence of some physical, magnetic and electrical properties of Ga substituted Mn-ferrites. Journal of materials science. 1 Jan 2004; 39(2): 451-5.
Kim DH, Nikles DE, Brazel CS. Synthesis and characterization of multifunctional chitosan-MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery. Materials. 2010; 3(7): 4051-65.
Batoo KM. Study of dielectric and impedance properties of Mn ferrites. Physica B: Condensed Matter. 1 Feb 2011; 406(3): 382-7.
Kim DH, Zeng H, Ng TC, Brazel CS. T1 and T2 relaxivities of succimer- coated MFe23+ O4 (M= Mn2+, Fe2+ and Co2+) inverse spinel ferrites for potential use as phase-contrast agents in medical MRI. Journal of Magnetism and Magnetic Materials. 1 Dec 2009; 321(23): 3899-904.
Lu X, Liang G, Sun Q, Yang C. High-frequency magnetic properties of Ni-Zn ferrite nanoparticles synthesized by a low temperature chemical method. Materials Letters. 1 Feb 2011; 65(4): 674-6.
Velmurugan K, Venkatachalapathy VS, Sendhilnathan S. Synthesis of nickel zinc iron nanoparticles by coprecipitation technique. Materials Research. Sep 2010; 13(3): 299-303.
Sousa MH, Hasmonay E, Depeyrot J, Tourinho FA, Bacri JC, Dubois E, Perzynski R, Raikher YL. NiFe2O4 nanoparticles in ferrofluids: evidence of spin disorder in the surface layer. Journal of Magnetism and Magnetic Materials. 1 Apr 2002; 242: 572-4.
Candeia RA, Bernardi MI, Longo E, Santos IM, Souza AG. Synthesis and characterization of spinel pigment CaFe2O4 obtained by the polymeric precursor method. Materials Letters. 1 Feb 2004; 58(5): 569-72.
Dadwal M, Solan D, Pradesh H. Polymeric nanoparticles as promising novel carriers for drug delivery: An overview. Journal of Advanced Pharmacy Education and Research Jan-Mar. 2014; 4(1).
Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnology, Biology and Medicine. 1 Apr 2011; 7(2): 184-92.
Hou Y, Xu Z, Peng S, Rong C, Liu JP, Sun S. A facile synthesis of SmCo5 magnets from core/shell Co/Sm2O3 nanoparticles. Advanced Materials. 19 Oct 2007; 19(20): 3349-52.
Patra CR, Bhattacharya R, Mukherjee P. Fabrication and functional characterization of goldnanoconjugates for potential application in ovarian cancer. Journal of materials chemistry. 2010; 20(3): 547-54.
Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied physics letters. 21 May 2007; 90(21): 213902.
Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A. Microwave‐assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Advanced Functional Materials. Oct 2005; 15(10): 1708-15.
Krishnamoorthy K, Manivannan G, Kim SJ, Jeyasubramanian K, Premanathan M. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. Journal of Nanoparticle Research. 1 Sep 2012; 14(9): 1063.
Ge S, Wang G, Shen Y, Zhang Q, Jia D, Wang H, Dong Q, Yin T. Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. IET nanobiotechnology. 1 Jun 2011; 5(2): 36-40.
Sun J, Wang S, Zhao D, Hun FH, Weng L, Liu H. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell biology and toxicology. 1 Oct 2011; 27(5): 333-42.
Lai JC, Lai MB, Jandhyam S, Dukhande VV, Bhushan A, Daniels CK, Leung SW. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. International journal of nanomedicine. Dec 2008; 3(4): 533.
Kostev ek N, u ek o man K, sha MS, Sp eitze M, Ko e S, tu m S. Multimodal hybrid FePt/SiO2/Au nanoparticles for nanomedical applications: Combining photothermal stimulation and manipulation with an external magnetic field. The Journal of Physical Chemistry C. 6 Jul 2015; 119(28): 16374-82.
Hou Y, Kondoh H, Kogure T, Ohta T. Preparation and characterization of monodisperse FePd nanoparticles. Chemistry of materials. 30 Nov 2004; 16(24): 5149-52.
Ghosh M, Biswas K, Sundaresan A, Rao CN. MnO and NiO nanoparticles: synthesis and magnetic properties. Journal of Materials Chemistry. 2006; 16(1): 106-11.
Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, McConnell MV, Nishimura DG, Dai H. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nature materials. Dec 2006; 5(12): 971.
Xu HK, Sorensen CM, Klabunde KJ, Hadjipanayis GC. Aerosol synthesis of gadolinium iron garnet particles. Journal of materials research. Mar 1992; 7(3): 712-6.
Auzans E, Zins D, Blums E, Massart R. Synthesis and properties of Mn-Zn ferrite ferrofluids. Journal of materials science. 1 Mar 1999; 34(6): 1253-60.
Odenbach S. Ferrofluids-magnetisable liquids and their application in density separation. Physical Separation in Science and Engineering. 1998; 9(1): 1-25.
L pez-L pez M, G mez- am ez, o guez-Arco L, Durán JD, Iskakova L, Zubarev A. Colloids on the frontier of ferrofluids. Rheological properties. Langmuir. 2 Apr 2012; 28(15): 6232-45.
López-López MT, Durán JD, Delgado AV, González-Caballero F. Stability and magnetic characterization of oleate-covered magnetite ferrofluids in different nonpolar carriers. Journal of Colloid and Interface Science. 1 Nov 2005; 291(1): 144-51.
Kroell M, Pridoehl M, Zimmermann G, Pop L, Odenbach S, Hartwig A. Magnetic and rheological characterization of novel ferrofluids. Journal of magnetism and magnetic materials. 1 Mar 2005; 289: 21-4.
Donadel K, Felisberto MD, Fávere VT, Rigoni M, Batistela NJ, Laranjeira MC. Synthesis and characterization of the iron oxide magnetic particles coated with chitosan biopolymer. Materials Science and Engineering: C. 1 May 2008; 28(4): 509-14.
Khosroshahi ME, Ghazanfari L. Preparation and rheological studies of uncoated and PVA-coated magnetite nanofluid. Journal of Magnetism and Magnetic Materials. 1 Dec 2012; 324(24): 4143-6.
Brullot W, Reddy NK, Wouters J, Valev VK, Goderis B, Vermant J, Verbiest T. Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials. 1 Jun 2012; 324(11): 1919-25.
Yang C, Zhao H, Hou Y, Ma D. Fe5C2 nanoparticles: a facile bromide- induced synthesis and as an active phase for Fischer–Tropsch synthesis. Journal of the American Chemical Society. 12 Sep 2012; 134(38): 15814-21.
Yang Z, Zhao T, Huang X, Chu X, Tang T, Ju Y, Wang Q, Hou Y, Gao S. Modulating the phases of iron carbide nanoparticles: from a perspective of interfering with the carbon penetration of Fe@ Fe 3 O 4 by selectively adsorbed halide ions. Chemical science. 2017; 8(1): 473-81.
Zhou W, Zheng K, He L, Wang R, Guo L, Chen C, Han X, Zhang Z. Ni/Ni3C core–shell nanochains and its magnetic properties: one-step synthesis at low temperature. Nano letters. 22 Mar 2008; 8(4): 1147-52.
Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. nature. Jul 2006; 442(7100): 282.
Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chemical society reviews. 2010; 39(1): 228-40.
Lu AH, Salabas EE, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 12 Feb 2007; 46(8): 1222-44.
Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society. 29 Jul 2008; 130(33): 10876-7.
Rana VK, Choi MC, Kong JY, Kim GY, Kim MJ, Kim SH, Mishra S, Singh RP, Ha CS. Synthesis and drug‐delivery behavior of chitosan‐functionalized graphene oxide hybrid nanosheets. Macromolecular Materials and Engineering. 14 Feb 2011; 296(2): 131-40.
Liu K, Zhang JJ, Cheng FF, Zheng TT, Wang C, Zhu JJ. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. Journal of Materials Chemistry. 2011; 21(32): 12034-40.
Yang Y, Zhang YM, Chen Y, Zhao D, Chen JT, Liu Y. Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chemistry–A European Journal. 2 Apr 2012; 18(14): 4208-15.
Jana A, Scheer E, Polarz S. Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein journal of nanotechnology. 24 Mar 2017; 8(1): 688-714.
Hong H, Yang K, Zhang Y, Engle JW, Feng L, Yang Y, Nayak TR, Goel S, Bean J, Theuer CP, Barnhart TE. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS nano. 16 Feb 2012; 6(3): 2361-70.
Saeed AA, Sánchez JL, O'Sullivan CK, Abbas MN. DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry. 1 Dec 2017; 118: 91
Al-Ani LA, AlSaadi MA, Kadir FA, Hashim NM, Julkapli NM, Yehye WA. Graphene–gold based nanocomposites applications in cancer diseases; efficient detection and therapeutic tools. European journal of medicinal chemistry. 20 Oct 2017; 139: 349-66.
Ganguly S, Das P, Bose M, Das TK, Mondal S, Das AK, Das NC. Sonochemical green reduction to prepare Ag nanoparticles decorated graphene sheets for catalytic performance and antibacterial application. Ultrasonics sonochemistry. 1 Nov 2017; 39: 577-88.
Ovsianytskyi O, Nam YS, Tsymbalenko O, Lan PT, Moon MW, Lee KB. Highly sensitive chemiresistive H2S gas sensor based on graphene decorated with Ag nanoparticles and charged impurities. Sensors and Actuators B: Chemical. 1 Mar 2018; 257: 278-85.
Naskar A, Bera S, Bhattacharya R, Roy SS, Jana S. Effect of bovine serum albumin immobilized Au–ZnO–graphene nanocomposite on human ovarian cancer cell. Journal of Alloys and Compounds. 15 Feb 2018; 734: 66-74.
Low SS, Tan MT, Loh HS, Khiew PS, Chiu WS. Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor. Analytica chimica acta. 15 Jan 2016; 903: 131-41.
Khatamian M, Divband B, Farahmand-Zahed F. Synthesis and characterization of Zinc (II)-loaded Zeolite/Graphene oxide nanocomposite as a new drug carrier. Materials Science and Engineering: C. 1 Sep 2016; 66: 251- 8.
Lingamdinne LP, Choi YL, Kim IS, Yang JK, Koduru JR, Chang YY. Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. Journal of hazardous materials. 15 Mar 2017; 326: 145-56.
Omidvar A, Jaleh B, Nasrollahzadeh M. Preparation of the GO/Pd nanocomposite and its application for the degradation of organic dyes in water. Journal of colloid and interface science. 15 Jun 2017; 496: 44-50.
Toloman D, Popa A, Stan M, Socaci C, Biris AR, Katona G, Tudorache F, Petrila I, Iacomi F. Reduced graphene oxide decorated with Fe doped SnO2 nanoparticles for humidity sensor. Applied Surface Science. 30 Apr 2017; 402: 410-7.
Ji Z, Wang Y, Yu Q, Shen X, Li N, Ma H, Yang J, Wang J. One-step thermal synthesis of nickel nanoparticles modified graphene sheets for enzymeless glucose detection. Journal of colloid and interface science. 15 Nov 2017; 506: 678-84.
Lu AH, Salabas EE, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 12 Feb 2007; 46(8): 1222-44.
Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. Superparamagnetic graphene oxide–Fe 3 O 4 nanoparticles hybrid for controlled targeted drug carriers. Journal of materials chemistry. 2009; 19(18): 2710-4.
Yang X, Wang Y, Huang X, Ma Y, Huang Y, Yang R, Duan H, Chen Y. Multi-functionalized graphene oxide based anticancer drug-carrier with dual- targeting function and pH-sensitivity. Journal of materials chemistry. 2011; 21(10): 3448-54.
Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research. 1 Mar 2012; 5(3): 199-212.
Chen W, Yi P, Zhang Y, Zhang L, Deng Z, Zhang Z. Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS applied materials and interfaces. 19 Sep 2011; 3(10): 4085-91.
Xu M, Huang Q, Wang X, Sun R. Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids. Industrial Crops and Products. 1 Aug 2015; 70: 56-63.
Pal N, Dubey P, Gopinath P, Pal K. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. International journal of biological macromolecules. 1 Feb 2017; 95: 94-105.
Ramani D, Sastry TP. Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose. 1 Oct 2014; 21(5): 3585-95.
Shao W, Liu H, Liu X, Wang S, Zhang R. Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. RSC Advances. 2015; 5(7): 4795-803.
Nandgaonkar AG, Wang Q, Fu K, Krause WE, Wei Q, Gorga R, Lucia LA. A one-pot biosynthesis of reduced graphene oxide (RGO)/bacterial cellulose (BC) nanocomposites. Green Chemistry. 2014; 16(6): 3195-201.
Luo H, Ao H, Li G, Li W, Xiong G, Zhu Y, Wan Y. Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Current Applied Physics. 1 Feb 2017; 17(2): 249-54.
Wang C, Wu C, Zhou X, Han T, Xin X, Wu J, Zhang J, Guo S. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Scientific reports. 4 Oct 2013; 3: 2852.
Schroeder KL, Goreham RV, Nann T. Graphene quantum dots for theranostics and bioimaging. Pharmaceutical research. Oct 2016; 33(10): 2337-57.
Javanbakht S, Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Materials Science and Engineering: C. Jun 2018; 87: 50-9.
Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M. Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry. Jun 2018; 8(2): 123-37.
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology and therapeutics. May 2008; 83(5): 761-9.
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature materials. Nov 2013; 12(11): 991.
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of controlled release. Dec 2010; 148(2): 135-46.
Blazkova I, Nguyen H, Dostalova S, Kopel P, Stanisavljevic M, Vaculovicova M, Stiborova M, Eckschlager T, Kizek R, Adam V. Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery. International journal of molecular sciences. Jul 2013; 14(7): 13391-402.
Zitka O, Cernei N, Heger Z, Matousek M, Kopel P, Kynicky J, Masarik M, Kizek R, Adam V. Microfluidic chip coupled with modified paramagnetic particles for sarcosine isolation in urine. Electrophoresis. Sep 2013; 34(18): 2639-47.
Heger Z, Zitka J, Cernei N, Krizkova S, Sztalmachova M, Kopel P, Masarik M, Hodek P, Zitka O, Adam V, Kizek R. 3D‐printed biosensor with poly (dimethylsiloxane) reservoir for magnetic separation and quantum dots‐based immunolabeling of metallothionein. Electrophoresis. Jun 2015; 36(11- 12): 1256-64.
Zitka O, Krizkova S, Krejcova L, Hynek D, Gumulec J, Masarik M, Sochor J, Adam V, Hubalek J, Trnkova L, Kizek R. Microfluidic tool based on the antibody‐modified paramagnetic particles for detection of 8‐hydroxy‐2′‐ deoxyguanosine in urine of prostate cancer patients. Electrophoresis. Nov 2011; 32(22): 3207-20.
Rodrigo MA, Krejcova L, Kudr J, Cernei N, Kopel P, Richtera L, Moulick A, Hynek D, Adam V, Stiborova M, Eckschlager T. Fully automated two-step assay for detection of metallothionein through magnetic isolation using functionalize γ-Fe2O3 particles. Journal of Chromatography B. 15 Dec 2016; 1039: 17-27.
Jimenez AM, Rodrigo MA, Milosavljevic V, Krizkova S, Kopel P, Heger Z, Adam V. Gold nanoparticles-modified nanomaghemite and quantum dots- based hybridization assay for detection of HPV. Sensors and Actuators B: Chemical. 1 Mar 2017; 240: 503-10.
Michalek P, Dostalova S, Buchtelova H, Cernei N, Krejcova L, Hynek D, Milosavljevic V, Jimenez AM, Kopel P, Heger Z, Adam V. A two‐step protocol for isolation of influenza A (H7N7) virions and their RNA for PCR diagnostics based on modified paramagnetic particles. Electrophoresis. Jul 2016; 37(14): 2025-35.
Cihalova K, Hegerova D, Jimenez AM, Milosavljevic V, Kudr J, Skalickova S, Hynek D, Kopel P, Vaculovicova M, Adam V. Antibody-free detection of infectious bacteria using quantum dots-based barcode assay. Journal of pharmaceutical and biomedical analysis. 5 Feb 2017; 134: 325-32.
Cihalova K, Hegerova D, Dostalova S, Jelinkova P, Krejcova L, Milosavljevic V, Krizkova S, Kopel P, Adam V. Particle-based immunochemical separation of methicillin resistant Staphylococcus aureus with indirect electrochemical detection of labeling oligonucleotides. Analytical Methods. 2016; 8(25): 5123- 8.
Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature nanotechnology. Jul 2011; 6(7): 418.
Yoo D, Lee JH, Shin TH, Cheon J. Theranostic magnetic nanoparticles. Accounts of chemical research. 8 Aug 2011; 44(10): 863-74.
Si S, Kotal A, Mandal TK, Giri S, Nakamura H, Kohara T. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chemistry of Materials. 7 Sep 2004; 16(18): 3489-96.
Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G. Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. Journal of the American Chemical Society. 14 Jan 2004; 126(1): 273-9.
Baaziz W, Pichon BP, Fleutot S, Liu Y, Lefevre C, Greneche JM, Toumi M, Mhiri T, Begin-Colin S. Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. The Journal of Physical Chemistry C. 10 Feb 2014; 118(7): 3795-810.
Ho D, Sun X, Sun S. Monodisperse magnetic nanoparticles for theranostic applications. Accounts of chemical research. 10 Jun 2011; 44(10): 875-82.
Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Accounts of chemical research. 28 May 2009; 42(8): 1097-107.
Dutz S, Hergt R. Magnetic particle hyperthermia—a promising tumour therapy?. Nanotechnology. 22 Oct 2014; 25(45): 452001.
Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. Journal of bioscience and bioengineering. 1 Jul 2005; 100(1): 1-1.
Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chemical reviews. 25 Apr 2016; 116(9): 5338-431.
Kohler N, Sun C, Wang J, Zhang M. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir. 13 Sep 2005; 21(19): 8858-64.
N'Guyen TT, Duong HT, Basuki J, Montembault V, Pascual S, Guibert C, Fresnais J, Boyer C, Whittaker MR, Davis TP, Fontaine L. Functional Iron Oxide Magnetic Nanoparticles with Hyperthermia‐Induced Drug Release Ability by Using a Combination of Orthogonal Click Reactions. Angewandte Chemie International Edition. 23 Dec 2013; 52(52): 14152-6.
Hwu JR, Lin YS, Josephrajan T, Hsu MH, Cheng FY, Yeh CS, Su WC, Shieh DB. Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. Journal of the American Chemical Society. 10 Dec 2008; 131(1): 66-8.
Tietze R, Lyer S, Dürr S, Struffert T, Engelhorn T, Schwarz M, Eckert E, Göen T, Vasylyev S, Peukert W, Wiekhorst F. Efficient drug-delivery using magnetic nanoparticles—biodistribution and therapeutic effects in tumour bearing rabbits. Nanomedicine: Nanotechnology, Biology and Medicine. 1 Oct 2013; 9(7): 961-71.
Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S. Drug‐ loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angewandte Chemie International Edition. 7 Jul 2008; 47(29): 5362-5.
Gautier J, Allard-Vannier E, Burlaud-Gaillard J, Domenech J, Chourpa I. Efficacy and hemotoxicity of stealth doxorubicin-loaded magnetic nanovectors on breast cancer xenografts. Journal of biomedical nanotechnology. 1 Jan 2015; 11(1): 177-89.
Masserini M. Nanoparticles for brain drug delivery. ISRN biochemistry. 21 May 2013;.
Shubayev VI, Pisanic II TR, Jin S. Magnetic nanoparticles for theragnostics. Advanced drug delivery reviews. 21 Jun 2009; 61(6): 467-77.
Yan H, Wang L, Wang J, Weng X, Lei H, Wang X, Jiang L, Zhu J, Lu W, Wei X, Li C. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS nano. 22 Dec 2011; 6(1): 410-20.
Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced drug delivery reviews. 8 Mar 2010; 62(3): 284-304.
Sun EY, Josephson L, Weissle e. ―Clicka le‖ nanopa ticles fo ta gete imaging. Molecular Imaging. 1 Apr 2006; 5(2): 7290-2006.
Nandivada H, Jiang X, Lahann J. Click chemistry: versatility and control in the hands of materials scientists. Advanced Materials. 3 Sep 2007; 19(17): 2197-208.
Grasset F, Mornet S, Demourgues A, Portier J, Bonnet J, Vekris A, Duguet E. Synthesis, magnetic properties, surface modification and cytotoxicity evaluation of Y3Fe5− x lxO12 (0⩽ x⩽ 2) garnet submicron particles for biomedical applications. Journal of magnetism and magnetic materials. 1 Sep 2001; 234(3): 409-18.{59A}
Stanicki D, Vander Elst L, Muller RN, Laurent S. Synthesis and processing of magnetic nanoparticles. Current Opinion in Chemical Engineering. 1 May 2015; 8: 7-14.
DeCastro CL, Mitchell BS. Nanoparticles from mechanical attrition. Synthesis, functionalization, and surface treatment of nanoparticles. 2002: 1-5.
Kurland HD, Grabow J, Staupendahl G, Andrä W, Dutz S, Bellemann ME. Magnetic iron oxide nanopowders produced by CO2 laser evaporation. Journal of Magnetism and Magnetic Materials. 1 Apr 2007; 311(1): 73-7.
Kurland HD, Grabow J, Staupendahl G, Müller FA, Müller E, Dutz S, Bellemann ME. Magnetic iron oxide nanopowders produced by CO2 laser evaporation—‗In situ‘coating an pa ticle em e ing in a ce amic mat ix. Journal of Magnetism and Magnetic Materials. 1 May 2009; 321(10): 1381-5.
St tzel C, Ku lan HD, G a ow J, Dutz S, M lle E, Sie ka M, M lle F. Control of the Crystal Phase Composition of Fe x O y Nanopowders Prepared by CO2 Laser Vaporization. Crystal Growth and Design. 25 Sep 2013; 13(11): 4868-76.
Faraji M, Yamini Y, Rezaee M. Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. Journal of the Iranian Chemical Society.1 Mar 2010; 7(1): 1-37.
Indira TK, Lakshmi PK. Magnetic nanoparticles–a review. Int. J. Pharm. Sci. Nanotechnol. Dec 2010; 3(3): 1035-42.
Sandeep Kumar V. Magnetic nanoparticles-based biomedical and bioanalytical applications. J Nanomed Nanotechol. 2013; 4: e130.
Jolivet JP, Henry M, Livage J. Metal oxide chemistry and synthesis: from solution to solid state. Wiley-Blackwell. 19 Oct 2000.
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. biomaterials. 1 Jun 2005; 26(18): 3995-4021.
Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drugdelivery: preparation, characterization, and cytotoxicity studies. IEEE transactions on nanobioscience. Mar 2004; 3(1): 66-73.
Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials. 1 Jan 2001; 225(1-2): 30-6.
Jana NR, Chen Y, Peng X. Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chemistry of materials. 5 Oct 2004; 16(20): 3931-5.
Rockenberger J, Scher EC, Alivisatos AP. A new nonhydrolytic single- precursor approach to surfactant-capped nanocrystals of transition metal oxides. Journal of the American Chemical Society. 15 Dec 1999; 121(49): 11595-6.
Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T. Iron oxide nanoparticles: Diagnostic,therapeutic and theranostic applications. Advanced drug delivery reviews. 1 Jan 2019; 138: 302-25.
Grüttner C, Müller K, Teller J, Westphal F. Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. International Journal of Hyperthermia. 1 Dec 2013; 29(8): 777-89.
Kekalo K, Koo K, Zeitchick E, Baker I. Microemulsion synthesis of iron core/iron oxide shell magnetic nanoparticles and their physicochemical properties. MRS Online Proceedings Library Archive. 2012; 1416.
López R, Pineda M, Hurtado G, León R, Fernández S, Saade H, Bueno D. Chitosan-coated magnetic nanoparticles prepared in one step by reverse microemulsion precipitation. International journal of molecular sciences. Oct 2013; 14(10): 19636-50.
Ban I, Stergar J, Drofenik M, Ferk G, Makovec D. Synthesis of chromium- nickel nanoparticles prepared by a microemulsion method and mechanical milling. Acta Chimica Slovenica. 13 Jan 2014; 60(4): 750-5.
Biehl P, von der Lühe M, Dutz S, Schacher F. Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polymers. 18 Jan 2018; 10(1): 91.
Lu AH, Salabas EE, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 12 Feb 2007; 46(8): 1222-44.
Wang Y, Yang CX, Yan XP. Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale. 2017; 9(26): 9049-55.
Nejati K, Zabihi R. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chemistry Central Journal. Dec 2012; 6(1): 23.
Lassoued A, Lassoued MS, Dkhil B, Ammar S, Gadri A. Synthesis, photoluminescence an Magnetic p ope ties of i on oxi e (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods. Physica E: Low- dimensional Systems and Nanostructures. 1 Jul 2018; 101: 212-9.
Gye gyek S, Makovec D, Jago ič M, D ofenik M, Schenk K, Jo an O, Kovač J, D a ič G, Hofmann H. Hy othe mal g owth of i on oxi e NPs with a uniform size distribution for magnetically induced hyperthermia: Structural, colloidal and magnetic properties. Journal of Alloys and Compounds. 15 Feb 2017; 694: 261-71.
Wegmann M, Scharr M. Synthesis of Magnetic Iron Oxide Nanoparticles. InPrecision Medicine. 1 Jan 2018; 145-181.
Yu SH, Fujino T, Yoshimura M. Hydrothermal synthesis of ZnFe2O4 ultrafine particles with high magnetization. Journal of Magnetism and Magnetic Materials. 1 Jan 2003; 256(1-3): 420-4.
Shaker S, Zafarian S, Chakra SH, Rao KV. Preparation and characterization of magnetite nanoparticles by Sol-Gel method for water treatment. Int J Inn Res Sci Eng Technol. 2013; 2(7): 2969-73.
Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of physics D: Applied physics. 18 Jun 2003; 36(13): R167.
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews. 11 Jun 2008; 108(6): 2064-110.
Hasany SF, Ahmed I, Rajan J, Rehman A. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol. 2012; 2(6): 148-58.
Sakka S, Kozuka H. editors. Handbook of sol-gel science and technology. 1. Sol-gel processing. Springer Science and Business Media. 2005.
Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale research letters. 2008 Nov; 3(11): 397.
Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG. Chemically prepared magnetic nanoparticles. International materials reviews. 2004 Jun 1; 49(3-4): 125-70.
Kim EH, Lee HS, Kwak BK, Kim BK. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. Journal of Magnetism and Magnetic Materials. 1 Mar 2005; 289: 328-30.
Serban BC, Brezeanu M, Luca AD, Ali SZ, Buiu O, Cobianu C, Stratulat A, Udrea F, Avramescu V, Varachiu N, Ionescu O. Nanostructured metal oxides semiconductors for oxygen chemiresistive sensing. SCIENCE AND TECHNOLOGY. 1 Jan 2017; 20(2): 86-100.
Jeong SH, Ko JH, Park JB, Park W. A sonochemical route to single-walled carbon nanotubes under ambient conditions. Journal of the American Chemical Society. 15 Dec 2004; 126(49): 15982-3.
Kotelnikova PA, Shipunova VO, Aghayeva UF, Stremovskiy OA, Nikitin MP, Novikov IA, Schulga AA, Deyev SM, Petrov RV. Synthesis of Magnetic Nanoparticles Stabilized by Magnetite-Binding Protein for Targeted Delivery to Cancer Cells. InDoklady Biochemistry and Biophysics. 1 Jul 2018 481(1): 198-200.
Gorobets O, Gorobets S, Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: From bacteria to humans. International journal of nanomedicine. 2017; 12: 4371.
Pandey S, Oza G, Mewada A, Sharon M. Green synthesis of highly stable gold nanoparticles using Momordica charantia as nano fabricator. Arch. Appl. Sci. Res. 2012; 4(2): 1135-41.
Khan SU, Saleh TA, Wahab A, Khan MH, Khan D, Khan WU, Rahim A, Kamal S, Khan FU, Fahad S. Nanosilver: new ageless and versatile biomedical therapeutic scaffold. International journal of nanomedicine. 2018; 13: 733.
Tummalapalli M, Deopura BL, Alam MS, Gupta B. Facile and green synthesis of silver nanoparticles using oxidized pectin. Materials Science and Engineering: C. 1 May 2015; 50: 31-6.
Park JH, Shin SH, Kim SH, Park JK, Lee JW, Shin JH, Park JH, Kim SW, Choi HJ, Lee KS, Ro JC. Effect of Synthesis Time and Composition on Magnetic Properties of FeCo Nanoparticles by Polyol Method. Journal of nanoscience and nanotechnology. 1 Oct 2018; 18(10): 7115-9.
Hemery G, Keyes Jr AC, Garaio E, Rodrigo I, Garcia JA, Plazaola F, Garanger E, Sandre O. Tuning sizes, morphologies, and magnetic properties of monocore versus multicore iron oxide nanoparticles through the controlled addition of water in the polyol synthesis. Inorganic chemistry. 3 Jul 2017; 56(14): 8232-43.
Tartaj P, del Puerto Morales M, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. Journal of physics D: Applied physics. 18 Jun 2003; 36(13): R182.
Nejati-Koshki K, Mesgari M, Ebrahimi E, Abbasalizadeh F, Fekri Aval S, Khandaghi AA, Abasi M, Akbarzadeh A. Synthesis and in vitro study of cisplatin-loaded Fe3O4 nanoparticles modified with PLGA-PEG6000 copolymers in treatment of lung cancer. Journal of microencapsulation. 1 Dec 2014; 31(8): 815-23.
Ebrahimi E, Akbarzadeh A, Abbasi E, Khandaghi AA, Abasalizadeh F, Davaran S. Novel drug delivery system based on doxorubicin-encapsulated magnetic nanoparticles modified with PLGA-PEG1000 copolymer. Artificial cells, nanomedicine, and biotechnology. 2 Jan 2016; 44(1): 290-7.
Giri AK, Chowdary KM, Majetich S. AC magnetic properties of compacted FeCo nanocomposites. Materials Physics and Mechanics(Russia). Mar 2000; 1(1): 1-0.
Toneguzzo P, Viau G, Acher O, Guillet F, Bruneton E, Fievet-Vincent F, Fievet F. CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties. Journal of materials science. 1 Aug 2000; 35(15): 3767-84.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.