Beta-lactam antibiotics and extended spectrum beta-lactamases

Authors

  • Vitus Silago Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences-Bugando, P. O. Box 1464, Mwanza, Tanzania.

DOI:

https://doi.org/10.30574/gscarr.2021.9.2.0200

Keywords:

Antimicrobial resistance, Molecular detection of ESBL, Multidrug resistance, Phenotypic detection of ESBLs production

Abstract

Extended spectrum beta-lactamases (ESBLs) are enzymes produced by bacteria, mostly members of the family Enterobacteriaceae commonly Escherichia coli and Klebsiella pneumoniae. ESBLs hydrolyze the beta-lactam ring of beta-lactam antibiotics making these antibiotics ineffective therefore rendering the bacteria resistance against beta-lactam antibiotics. The global upsurge of ESBLs producing bacteria causing both hospital and community acquired infections mostly urinary tract infections, pneumonia and bloodstream infections, threatens the effectiveness of infectious diseases treatment. ESBL families; TEM, SHV and CTX-M are globally disseminated and frequently detected in clinical isolates as well as colonization and contamination isolates. Various laboratory detection methods of ESBLs producing Gram negative bacteria are available. These methods; phenotypic methods, automated methods and molecular-based methods are varying in sensitivity and specificity, need of technical expertise, and rapidness. Therefore, they should be clearly understood before being employed for routine or research use for detection of ESBLs production among Enterobacteriaceae. In addition, understanding the mode of action and mechanisms of resistance to beta-lactam antibiotics, and the epidemiology of ESBLs producing bacteria is of paramount.

Metrics

Metrics Loading ...

References

Pandey N, Cascella M: Beta lactam antibiotics. StatPearls [Internet] 2020.

Saravolatz LD, Stein GE, Johnson LB: Ceftaroline: a novel cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Clinical infectious diseases 2011, 52(9):1156-1163.

Suarez C, Gudiol F: Beta-lactam antibiotics. Enfermedades infecciosas y microbiologia clinica 2009, 27(2):116-129.

Overview of beta-lactam antibacterials

Opal SM, Pop-Vicas A: 18-Molecular Mechanisms of Antibiotic Resistance in Bacteria. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases 2015:235-251.

Kapoor G, Saigal S, Elongavan A: Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of anaesthesiology, clinical pharmacology 2017, 33(3):300.

Etebu E, Arikekpar I: Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int J Appl Microbiol Biotechnol Res 2016, 4:90-101.

Drawz SM, Bonomo RA: Three decades of β-lactamase inhibitors. Clinical microbiology reviews 2010, 23(1):160-201.

Fernando M, Luke W, Miththinda J, Wickramasinghe R, Sebastiampillai B, Gunathilake M, Silva F, Premaratna R: Extended spectrum beta lactamase producing organisms causing urinary tract infections in Sri Lanka and their antibiotic susceptibility pattern–a hospital based cross sectional study. BMC infectious diseases 2017, 17(1):138.

Ruppé É, Woerther P-L, Barbier F: Mechanisms of antimicrobial resistance in Gram-negative bacilli. Annals of intensive care 2015, 5(1):21.

Jacoby GA, Munoz-Price LS: The new β-lactamases. New England Journal of Medicine 2005, 352(4):380-391.

Liakopoulos A, Mevius D, Ceccarelli D: A review of SHV extended-spectrum β-lactamases: neglected yet ubiquitous. Frontiers in microbiology 2016, 7:1374.

Ozgumus OB, Tosun I, Aydin F, Kilic AO: Horizontol dissemination of TEM-and SHV-typr beta-lactamase genes-carrying resistance plasmids amongst clonical isolates of Enterobacteriaceae. Brazilian Journal of Microbiology 2008, 39(4):636-643.

Adamczuk M, Zaleski P, Dziewit L, Wolinowska R, Nieckarz M, Wawrzyniak P, Kieryl P, Plucienniczak A, Bartosik D: Diversity and global distribution of IncL/M plasmids enabling horizontal dissemination of β-lactam resistance genes among the Enterobacteriaceae. BioMed research international 2015, 2015.

Nyambura Moremi HC, Vogel U, Mshana SE: Faecal carriage of CTX-M extended-spectrum beta-lactamase-producing Enterobacteriaceae among street children dwelling in Mwanza city, Tanzania. PloS one 2017, 12(9).

Moremi N, Claus H, Silago V, Kabage P, Abednego R, Matee M, Vogel U, Mshana S: Hospital surface contamination with antimicrobial-resistant gram-negative organisms in Tanzanian regional and tertiary hospitals: the need to improve environmental cleaning. Journal of Hospital Infection 2019, 102(1):98-100.

Silago V, Kovacs D, Msanga DR, Seni J, Matthews L, Oravcová K, Zadoks RN, Lupindu AM, Hoza AS, Mshana SE: Bacteremia in critical care units at Bugando Medical Centre, Mwanza, Tanzania: the role of colonization and contaminated cots and mothers’ hands in cross-transmission of multidrug resistant Gram-negative bacteria. Antimicrobial Resistance & Infection Control 2020, 9(1):1-14.

Silago V, Kikaro DJ, Simon PB, Mushi MF, Seni J, Mshana SE, CUHAS B: Extended Spectrum Beta Lactamase Producing Gram Negative Bacteria Contaminating Medical Examination Equipment and Clinical Coats at Bugando Medical Centre, Tanzania: Implication for Infection Prevention and Control.

Thaden JT, Fowler VG, Sexton DJ, Anderson DJ: Increasing incidence of extended-spectrum β-lactamase-producing Escherichia coli in community hospitals throughout the Southeastern United States. infection control & hospital epidemiology 2016, 37(1):49-54.

Vasaikar S, Obi L, Morobe I, Bisi-Johnson M: Molecular characteristics and antibiotic resistance profiles of Klebsiella isolates in Mthatha, Eastern Cape province, South Africa. International journal of microbiology 2017, 2017.

Moremi N, Manda EV, Falgenhauer L, Ghosh H, Imirzalioglu C, Matee M, Chakraborty T, Mshana SE: Predominance of CTX-M-15 among ESBL producers from environment and fish gut from the shores of Lake Victoria in Mwanza, Tanzania. Frontiers in microbiology 2016, 7:1862.

Habeeb MA, Sarwar Y, Ali A, Salman M, Haque A: Rapid emergence of ESBL producers in E. coli causing urinary and wound infections in Pakistan. Pakistan journal of medical sciences 2013, 29(2):540.

Hu YJ, Ogyu A, Cowling BJ, Fukuda K, Pang HH: Available evidence of antibiotic resistance from extended-spectrum β-lactamase-producing Enterobacteriaceae in paediatric patients in 20 countries: a systematic review and meta-analysis. Bulletin of the World Health Organization 2019, 97(7):486.

Gelband H, Miller-Petrie M, Pant S, Gandra S, Levinson J, Barter D: The state of the world’s antibiotics, 2015. Washington, New Delhi: Center For Disease Dynamics, Economics & Policy; 2015. In.

Bell J, Turnidge J: SENTRY Antimicrobial Surveillance Program Asia-Pacific region and South Africa This report analyses the data from the SENTRY Antimicrobial Surveillance Program, initiated in January 1997, designed to monitor the predominant pathogens and antimicrobial resistance for both nosocomial and community-acquired infections globally. This report was published as part of the Communicable Diseases Intelligence supplement on Antimicrobial resistance in Australia,(Volume 27, Suppl, May 2003). Page last updated: 04 July 2003. Communicable Diseases Intelligence 2003, 27.

Ramos N, Dzung D, Stopsack K, Jankó V, Pourshafie M, Katouli M, Brauner A: Characterisation of uropathogenic Escherichia coli from children with urinary tract infection in different countries. European journal of clinical microbiology & infectious diseases 2011, 30(12):1587-1593.

Ouedraogo A-S, Sanou M, Kissou A, Sanou S, Solaré H, Kaboré F, Poda A, Aberkane S, Bouzinbi N, Sano I: High prevalence of extended-spectrum ß-lactamase producing enterobacteriaceae among clinical isolates in Burkina Faso. BMC infectious diseases 2016, 16(1):326.

Sowmiya M, Malathi J, Madhavan HN: Screening of ocular enterobacteriaceae isolates for presence of chromosomal blaNDM-1 and ESBL genes: a 2-year study at a tertiary eye care center. Investigative ophthalmology & visual science 2012, 53(9):5251-5257.

Marando R, Seni J, Mirambo MM, Falgenhauer L, Moremi N, Mushi MF, Kayange N, Manyama F, Imirzalioglu C, Chakraborty T: Predictors of the extended-spectrum-beta lactamases producing Enterobacteriaceae neonatal sepsis at a tertiary hospital, Tanzania. International Journal of Medical Microbiology 2018, 308(7):803-811.

Kateregga JN, Kantume R, Atuhaire C, Lubowa MN, Ndukui JG: Phenotypic expression and prevalence of ESBL-producing Enterobacteriaceae in samples collected from patients in various wards of Mulago Hospital, Uganda. BMC pharmacology and Toxicology 2015, 16(1):14.

Taneja N, Sethi S, Tahlan AK, Kumar Y: Introductory Chapter: Stepping into the Post-Antibiotic Era—Challenges and Solutions. In: Antimicrobial Resistance-A Global Threat. IntechOpen; 2019.

CLSI: Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI supplement M100. Wyne, PA: Clinical and Laboratory Standards Institute; 2018. In.; 2020.

Overdevest I, Willemsen I, Elberts S, Verhulst C, Kluytmans J: Laboratory detection of extended-spectrum-beta-lactamase-producing Enterobacteriaceae: evaluation of two screening agar plates and two confirmation techniques. Journal of clinical microbiology 2011, 49(2):519-522.

Nelson E, Kayega J, Seni J, Mushi MF, Kidenya BR, Hokororo A, Zuechner A, Kihunrwa A, Mshana SE: Evaluation of existence and transmission of extended spectrum beta lactamase producing bacteria from post-delivery women to neonates at Bugando Medical Center, Mwanza-Tanzania. BMC research notes 2014, 7(1):279.

Wilson G, McCabe D: The use of antibiotic-containing agars for the isolation of extended-spectrum β-lactamase-producing organisms in intensive care units. Clinical microbiology and infection 2007, 13(4):451-453.

Swarna S, Srimathi N, Madhavan R, Gomathi S: Performance of extended spectrum beta lactamases (ESBL) screening agar in various clinical specimens. The Indian journal of medical research 2015, 141(4):481.

CHROMID ESBL: Chromogenic media for ESBL screening [https://www.biomerieux-diagnostics.com/chromidr-esbl]

Brilliance ESBL agar [http://www.oxoid.com/UK/blue/prod_detail/prod_detail.asp?pr=PO5302&cat=&c=UK&lang=EN]

Sturød K, Dahle UR, Berg ES, Steinbakk M, Wester AL: Evaluation of the ability of four ESBL-screening media to detect ESBL-producing Salmonella and Shigella. BMC microbiology 2014, 14(1):1-9.

El-Jade MR, Parcina M, Schmithausen RM, Stein C, Meilaender A, Hoerauf A, Molitor E, Bekeredjian-Ding I: ESBL detection: comparison of a commercially available chromogenic test for third generation cephalosporine resistance and automated susceptibility testing in enterobactericeae. PloS one 2016, 11(8):e0160203.

Silago V, Mukama Y, Haule AL, Chacha F, Igenge J, Mushi MF, Mshana SE: Bacteriospermia, extended spectrum beta lactamase producing Gram-negative bacteria and other factors associated with male infertility in Mwanza, Tanzania: a need of diagnostic bacteriology for management of male infertility. African Health Sciences 2020, 20(1):4-13.

Linscott AJ, Brown WJ: Evaluation of four commercially available extended-spectrum beta-lactamase phenotypic confirmation tests. Journal of clinical microbiology 2005, 43(3):1081-1085.

Jeong SH, Song W, Kim J-S, Kim H-S, Lee KM: Broth microdilution method to detect extended-spectrum β-lactamases and AmpC β-lactamases in Enterobacteriaceae isolates by use of clavulanic acid and boronic acid as inhibitors. Journal of clinical microbiology 2009, 47(11):3409-3412.

Khan M, Thukral S, Gaind R: Evaluation of a modified double-disc synergy test for detection of extended spectrum β-lactamases in AMPC β-lactamase-producing Proteus mirabilis. Indian journal of medical microbiology 2008, 26(1):58.

Diab AM, Abul-Aziz M, El-Kholy I, Rezk MA: MODIFIED DOUBLE-DISC SYNERGY TEST (MDDST) FOR DETECTION OF EXTENDED-SPECTRUM BETA-LACTAMASES IN AmpC BETA-LACTAMASE-PRODUCING KLEBSIELLA CLINICAL ISOLATES. EUROPEAN CHEMICAL BULLETIN 2018, 7(2):89-92.

Chowdhury AHMSK, Nandi S, Rahman M, Karim AA, Mamtaz SSH, Ara NNR, Sultana S: Comparison Between Phenotypic Confirmatory Test & Double Disc Synergy Test in Detection of Extended Spectrum b-Lactamases Producers Among Gram-Negative Bacilli. Chattagram Maa-O-Shishu Hospital Medical College Journal 2016, 15(2):3-8.

Roschanski N, Fischer J, Guerra B, Roesler U: Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PloS one 2014, 9(7):e100956.

Silago V, Kovacs D, Samson H, Seni J, Matthews L, Oravcová K, Lupindu AM, Hoza AS, Mshana SE: Existence of Multiple ESBL Genes among Phenotypically Confirmed ESBL Producing Klebsiella pneumoniae and Escherichia coli Concurrently Isolated from Clinical, Colonization and Contamination Samples from Neonatal Units at Bugando Medical Center, Mwanza, Tanzania. Antibiotics 2021, 10(5):476.

Willemsen I, Hille L, Vrolijk A, Bergmans A, Kluytmans J: Evaluation of a commercial real-time PCR for the detection of extended spectrum β-lactamase genes. Journal of medical microbiology 2014, 63(4):540-543.

Souverein D, Euser SM, van der Reijden WA, Herpers BL, Kluytmans J, Rossen JW, Den Boer JW: Clinical sensitivity and specificity of the Check-Points Check-Direct ESBL Screen for BD MAX, a real-time PCR for direct ESBL detection from rectal swabs. Journal of Antimicrobial Chemotherapy 2017, 72(9):2512-2518.

van den Bijllaardt W, Janssens M, Buiting A, Muller A, Mouton J, Verweij J: Extended-spectrum β-lactamase (ESBL) polymerase chain reaction assay on rectal swabs and enrichment broth for detection of ESBL carriage. Journal of Hospital Infection 2018, 98(3):264-269.

Sullivan R, Schaus D, John M, Delport J: Extended spectrum beta-lactamases: a minireview of clinical relevant groups. J Med Microbiol Diagn 2015, 4(203):2161-0703.1000203.

Spanu T, Sanguinetti M, Tumbarello M, D'Inzeo T, Fiori B, Posteraro B, Santangelo R, Cauda R, Fadda G: Evaluation of the new VITEK 2 extended-spectrum beta-lactamase (ESBL) test for rapid detection of ESBL production in Enterobacteriaceae isolates. Journal of Clinical Microbiology 2006, 44(9):3257-3262.

Robin F, Delmas J, Schweitzer C, Bonnet R: Evaluation of the Vitek-2 extended-spectrum β-lactamase test against non-duplicate strains of Enterobacteriaceae producing a broad diversity of well-characterised β-lactamases. Clinical microbiology and infection 2008, 14(2):148-154.

Snyder J, Munier G, Johnson C: Direct comparison of the BD Phoenix system with the MicroScan WalkAway system for identification and antimicrobial susceptibility testing of Enterobacteriaceae and nonfermentative gram-negative organisms. Journal of clinical microbiology 2008, 46(7):2327-2333.

Wiegand I, Geiss HK, Mack D, Stürenburg E, Seifert H: Detection of extended-spectrum beta-lactamases among Enterobacteriaceae by use of semiautomated microbiology systems and manual detection procedures. Journal of clinical microbiology 2007, 45(4):1167-1174.

Jang W, Park Y-J, Park KG, Yu J: Evaluation of MicroScan WalkAway and Vitek 2 for determination of the susceptibility of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates to cefepime, cefotaxime and ceftazidime. Journal of Antimicrobial Chemotherapy 2013, 68(10):2282-2285.

Tuma RS: MALDI-TOF mass spectrometry: Getting a feel for how it works. Oncology Times 2003, 25(19):26.

MALDI-TOF Mass Spectrometry [https://www.creative-proteomics.com/technology/maldi-tof-mass-spectrometry.htm]

Jung JS, Popp C, Sparbier K, Lange C, Kostrzewa M, Schubert S: Evaluation of matrix-assisted laser desorption ionization–time of flight mass spectrometry for rapid detection of β-lactam resistance in Enterobacteriaceae derived from blood cultures. Journal of clinical microbiology 2014, 52(3):924-930.

Matsumura Y, Yamamoto M, Nagao M, Tanaka M, Machida K, Ito Y, Takakura S, Ichiyama S: Detection of extended-spectrum-β-lactamase-producing Escherichia coli ST131 and ST405 clonal groups by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Journal of clinical microbiology 2014, 52(4):1034-1040.

Oviaño M, Fernández B, Fernández A, Barba M, Mouriño C, Bou G: Rapid detection of enterobacteriaceae producing extended spectrum beta‐lactamases directly from positive blood cultures by matrix‐assisted laser desorption ionization‐time of flight mass spectrometry. Clinical Microbiology and Infection 2014, 20(11):1146-1157.

Oviaño M, Gómara M, Barba MJ, Revillo MJ, Barbeyto LP, Bou G: Towards the early detection of β-lactamase-producing Enterobacteriaceae by MALDI-TOF MS analysis. Journal of Antimicrobial Chemotherapy 2017, 72(8):2259-2262.

Bernabeu S, Ratnam KC, Boutal H, Gonzalez C, Vogel A, Devilliers K, Plaisance M, Oueslati S, Malhotra-Kumar S, Dortet L: A lateral flow immunoassay for the rapid identification of CTX-M-producing Enterobacterales from culture plates and positive blood cultures. Diagnostics 2020, 10(10):764.

Downloads

Published

2021-11-30

How to Cite

Silago, V. . (2021). Beta-lactam antibiotics and extended spectrum beta-lactamases. GSC Advanced Research and Reviews, 9(2), 015–025. https://doi.org/10.30574/gscarr.2021.9.2.0200

Issue

Section

Review Article