Importance of extremophilic microorganisms in biogeochemical cycles

Authors

  • Arlette Galván González Academic Unit of Agriculture, Autonomous University of Nayarit, Jalisco, Nayarit, Mexico
  • Rocío Pérez y Terrón Faculty of Biological Sciences, Meritorious Autonomous University of Puebla, Puebla de Zaragoza, Puebla, Mexico.

DOI:

https://doi.org/10.30574/gscarr.2021.9.1.0229

Keywords:

Extremophilic microorganisms, Biogeochemical cycles, Sulfur, Carbon, Nitrogen

Abstract

Extremophilic microorganisms are organisms capable of proliferating under extreme conditions that are generally detrimental to most life on Earth. They are organisms considered of importance in different areas of research, due to their ability to produce proteins and enzymes under inhospitable conditions. Therefore, in the present work, the information on their participation in the processes of biogeochemical cycles was collected and analyzed in order to demonstrate their ecological importance. Recent studies on the metabolic pathways of the Extremophilic microorganisms and their environment have shown that most of the archaea, some bacteria and cyanobacteria carry out metabolic activities essential for the biogeochemical cycles of sulfur, carbon and nitrogen. Archaea and bacteria being one of the main microorganisms that participate in a variety of processes such as sulfidogenesis, methanogenesis, ANAMMOX (anaerobic ammonium oxidation), among others. This has suggested that Extremophilic microorganisms and extreme ecosystems have a significant impact on global biogeochemical cycles.

Metrics

Metrics Loading ...

References

Martínez-Espinosa RM. Microorganisms and Their Metabolic Capabilities in the Context of the Biogeochemical Nitrogen Cycle at Extreme Environments. International Journal of Molecular Sciences. 2020; 21(2): 4228.

Boyd R, Krell NT, Rajakaruna N. Extreme Environments. En D. Gibson (ed.). Oxford Bibliographies in Ecology. 2016.

Gómez F. Life in extreme environments. 2016.

Oliart-Ros RM, Manresa-Presas A, Sánchez-Otero M. Use of microorganisms from extreme environments and their products in biotechnological development. Ciencia UAT. 2016; 11(1): 79-90.

Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Frontiers in Microbiology. 2019; 10: 780.

Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature. 2001; 409(6823): 1092-101.

Offre P, Spang A, Schleper C. Archaea in Biogeochemical Cycles. The Annual Review of Microbiology. 2013; 67(1): 437-357.

Hameed A. Ecology Class Notes – Biogeochemical Cycle (Nutrient cycle). 2019.

Zheng B, Zhu Y, Sardan J, Peñuelas J, Su J. QMEC: a tool for high throughput quantitative assessment of microbial functional potential in C. N. P. and S biogeochemical cycling. Sci. China Life Sci. 2018; 61: 1451-1462.

Summons RE. Biogeochemical Cycles. En M. H. Engel., S. A. Macko (eds.) Organic Geochemistry. Topics in Geobiology, 11. Boston, MA.: Springer. 1993.

Drake H, Ivarsson M. The role of anaerobic fungi in fundamental biogeochemical cycles in the deep biosphere. Fungal Biology Reviews. 2017; 32(1): 20-25.

Sievert SM, Kiene RP, Schulz-Vogt HN. The sulfur Cycle. The Oceanography Society. 2007; 20(2).

Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles. 2014; 18(5).

Kumar U, Panneerselvam P, Gupta VVSR, Majunath M, Priyadarshinee P, Sahoo A, Dash SR, Kaviraj M, Annapurna K. Diversity of Sulfur-Oxidizing and Sulfur-Reducing Microbes in Diverse Ecosystems. En T. K. Adhya et al (eds.), Advances in Soil Microbiology: RecentTrends and Future Prospects. 2018; 65-89.

Zhang C, Dnag H, Azam F, Benner R, Legendre L, Passow U, Polimene L, Robinson C, Suttle CA, Jiao N. Evolving paradigms in biological carbon cycling in the ocean. National Science Review. 2018; 5: 481-499.

Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra S, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thronston P. Carbon and Other Biogeochemical Cycles. En T. F. Stocker., D. Qin., G.-K. Plattner., M. Tignor., S. K. Allen., J. Boschung., A. Nauels., Y. Xia., V. Bex., P. M. Midgley (eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. 2013.

Fang J, Li Z, Li J, Kato C, Tamburini C, Yuzhong Z, Hongyue D, Guangyi W, Fengping W. The POM-DOM piezophilic microorganism continuum (PDPMC)—The role of piezophilic microorganisms in the global ocean carbon cycle. Science China: Earth Sciences. 2015; 58(1): 106–115.

Dawson HM, Heal KR, Boysen AK, Carlson LT, Ingalls AE, Young JN. Potential of temperature- and salinity-driven shifts in diatom compatible solute concentrations to impact biogeochemical cycling within sea ice. Elem Sci Anth. 2020; 8(1): 25.

Marlow JJ, Steele JA, Case DH, Connon SA, Levin LA, Orphan VJ. Microbial Abundance and Diversity Patterns Associated with Sediments and Carbonates from the Methane Seep Environments of Hydrate Ridge, OR. Frontiers in Marine Science. 2014; 1(44).

Nazaries L, Murrells JC, Millard P, Baggas L, Singh BK. Methane, microbes and models: Fundamental uniderstanding of the soil methane cycle for future predictions. Environmental Microbiology. 2013; 15(9).

Rathour R, Gupta J, Mishra A, Rajeev AC, Dupont CL, Thakur Shekhar IS. A comparative metagenomic study reveals microbial diversity and their role in the biogeochemical cycling of Pangong lake. Science of the Total Environment. 2020; 731.

Pajares S, Ramos R. Processes and Microorganisms Involved in the Marine Nitrogen Cycle: Knowledge and Gaps. Frontiers in Marine Science. 2019; 6: 739.

Peretó J. Diazotrophy. En M. Gargaud., R. Amils., J. C. Quintanilla., H. J. CleavesII., W. M. Irvine., D. L. Pinti., M. Viso. (eds) Encyclopedia of Astrobiology. Berlin, Heidelberg: Springer. 2011.

Boltianskaia I, Kevbrin VV, Lysenko AM., Kolganova TV, Turova TP, Osipov GA, Zhilina TN. Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of reducing N2O, isolated from soda lakes. Mikrobiologiia. 2007; 76(6): 834–843.

Brochier-Armanet C, Gribaldo S, Forterre P. Spotlight on the Thaumarchaeota. The ISME Journal. 2012; 6: 227–230.

Garnova ES, Zhilina TN, Tourova TP, Lysenko AM. Anoxynatronum sibiricum gen.nov., sp.nov. alkaliphilic saccharolytic anaerobe from cellulolytic community of Nizhnee Beloe (Transbaikal region). Extremophiles. 2003; 7(3): 213-20.

Hocking WP, Roalkvam I, Magnussen C, Stokke R, Steen IH. Assesment of the Carbon Monoxide Metabolism of Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus VC-16 by Comparative Transcriptome Analyses. Archaea. 2015; 2015(16): 1-12.

Hoeft SE, Blum JS, Stolz JF, Tabita FR, Witte B, King GM, Santini JM, Oremland RS. Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. International Journal of Systematic and Evolutionary Microbiology. 2007; 53(3): 504-512.

Holmes DE, Risso C, Smith JA, Lovley DR. Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus. Applied and Environmental Microbiology. 2011; 77(1): 5926-5933.

Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Sorokin D, Fuse H, Lidstrom M, Trotsenko Y. Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. International Journal of Systematic and Evolutionary Microbiology. 2008; 58: 591–596.

Maezato Y, Johnson T, McCarthy S, Dana K, Blum P. Metal Resistance and Lithoautotrophy in the Extreme Thermoacidophile Metallosphaera sedula. Journal of Bacteriology. 2012; 194(24): 6856-6863.

Melton ED, Sorokin DY, Overmars L, Lapidus AL, Pillay M, Ivanova N, Del Rio TG, Kyrpides NC, Woyke T, Muyzer G. Draft genome sequence of Dethiobacter alkaliphilus strain AHT1T, a gram-positive sulfidogenic polyextremophile. Standards in genomic sciences. 2017; 12: 57.

Panda MK, Sahu MK, Tayung K. Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Iranian journal of microbiology. 2013; 5(2): 159–165.

Prowe SG, Antranikian G. Anaerobranca gottschalkii sp. nov., a novel thermoalkaliphilic bacterium that grows anaerobically at high pH and temperature. Int J Syst Evol Microbiol. 2001; 51(Pt 2): 457-465.

Ramírez-DN, Serrano-R JA, Sandoval-T H. Microorganismos extremófilos. Actinomicetos halófilos en México. Revista Mexicana de Ciencias Farmacéuticas. 2006; 37(3): 56-71.

Sorokin DY, Muyzer G, Brinkhoff T, Gijs Kuenen J, Jetten MSM. Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov. Arch Microbial. 1998; 170: 345-352.

Sorokin DY, Tourova TP, Henstra AM, Stams AJM, Galinski EA, Muyzer G. Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicat sp. nov. - A novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology. 2008; 154(Pt 5): 1444-53.

Sorokin DY, Tourova TP, Kolganova TV, Detkova EN, Galinski EA, Muyzer G. Culturable diversity of lithotrophic haloalkaliphilicsulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp.nov., and Desulfonatronovibrio magnus sp. nov. Extremophiles. 2011; 15(3): 391-401.

Sorokin DY, Tourova TP, Panteleeva AN, Muyzer G. Desulfonatronobacter acidivorans gen. nov., sp. nov. and Desulfobulbus alkaliphilus sp. nov., haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lakes. Int J Syst Evol Microbiol. 2011; 62(Pt 9): 2107-2113.

Vuilleumier S, Khmelenina VN, Bringel F, Reshetnikov AS, Lajus A, Mangenot S, Rouy Z, Op den Camp HJM, Jetten MSM, Dispirito AA, Dunfield P, Klotz MG, Semrau JD, Stein LY, Barbe V, Médigue C, Trotsenko YA, Kalyuzhnaya MG. Genome Sequence of the Haloalkaliphilic Methanotrophic Bacterium Methylomicrobium alcaliphilum 20Z. Journal of Bacteriology. 2011; 194(2): 551-552.

Wahlund TM, Madigan MT. Nitrogen fixation by the thermophilic green sulfur bacterium Chlorobium tepidum. Journal of Bacteriology. 1993; 175(2): 474–478.

Zavarzina GG, Tourova TP, Kolganova TV, Boulygina ES, Zhilina TN. Description of Anaerobacillus alkalilacustre gen. nov., sp. nov—Strictly Anaerobic Diazotrophic Bacillus Isolated from Soda Lake and Transfer of Bacillus arseniciselenatis, Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the New Combinations A. arseniciselenatis comb. nov., A. macyae comb. nov., and A. alkalidiazotrophicus comb. nov. Microbiology. 2009; 78(6): 723-731.

Zhilina TN, Kevbrin VV, Tourova TP, Lysenko AM, Kostrinkina NA, Zavarzin GA. Clostridium alkalicellum sp. nov., an Obligately Alkaliphilic Cellulolytic Bacterium from a Soda Lake in the Baikal Region. Microbiology. 2005; 74: 557–566.

Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Osipov GA, Kostrikina NA. Desulfonatronovibrio hydrogenovorans gen. ~ov., sp. nov., an Alkaliphilic, Sulfate-Reducing Bacterium. International journal of systematic bacteriology. 1997; 47(1): 144-9.

Zhilina TN, Zavarzina DG, Kuever J, Lysenko AM, Zavarzin GA. Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate. International Journal of Systematic and Evolutionary Microbiology. 2005; 55(Pt 3): 1001-6.

Sorokin DY, Kuenen JG, Jetten MS. Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD. Arch Microbiol. 2001; 175(2): 94-101.

Morris BEL, Henneberger, R., Huber, H., Moissl-Eichinger, C. Microbial syntrophy: interaction for the common

good. FEMS Microbial Rev. 2013; 37(3): 384-406.

Maccaroi L, Sanguino L, Vogel TM, Larose C. Snow and ice ecosystems: not so extreme. Research in Microbiology. 2015; 166(10): 782-795.

Anesio AM, Hodosn AJ, Fritz A, Psenner R, Sattler B. High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biology. 2009.

Downloads

Published

2021-10-30

How to Cite

González, A. G. ., & Terrón, R. P. y . (2021). Importance of extremophilic microorganisms in biogeochemical cycles. GSC Advanced Research and Reviews, 9(1), 082–093. https://doi.org/10.30574/gscarr.2021.9.1.0229

Issue

Section

Review Article