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Abstract 

Background: More than 25 million people in developing countries are living with HIV infection. An enormous global 
effort is now underway to bring antiretroviral treatment to at least 2.5 million of those infected. While drug prices have 
dropped considerably, the cost and technical complexity of laboratory tests essential for the management of HIV disease, 
such as CD4 cell counts, remain prohibitive. New, simple, and affordable methods for measuring CD4 cells that can be 
implemented in resource-scarce settings are urgently needed [5, 6].  

Methods and Findings: Here we describe the development of a prototype for a simple, rapid, and affordable method 
for counting CD4 lymphocytes. Microliter volumes of blood without further sample preparation are stained with 
fluorescent antibodies, captured on a membrane within a minimized flow cell and imaged through microscope optics 
with the type of charge-coupled device developed for digital camera technology [10]. An associated computer algorithm 
converts the raw digital image into absolute CD4 counts and CD4 percentages in real time. The accuracy of this prototype 
system was validated through testing in the United States and Botswana, and showed close agreement with standard 
flow cytometry (r = 0.95) over a range of absolute CD4 counts, and the ability to discriminate clinically relevant CD4 
count thresholds with high sensitivity and specificity [1,4] 
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1. Introduction

More than 25 million HIV-infected people live in developing countries with significant resource limitations. Although 5 
million people living in developing countries are in urgent need of antiretroviral therapy, only 600,000 to 700,000 
currently receive effective treatment [1, 2]. Global treatment efforts, including the World Health Organization's “3 by 5” 
Initiative, aim to extend therapy to several million people over the next few years [2, 3]. While the cost of antiretroviral 
medications has dropped considerably, other obstacles, including the cost, technical, and operational requirements of 
CD4 counts, viral loads, and other sophisticated diagnostic tests used to initiate and monitor HIV treatment, remain to 
be addressed [5]. 

In particular, measurements of CD4 T lymphocytes are essential for staging HIV-infected patients, determining their 
need for antiretroviral medications, and monitoring the course of their infection [3]. 

The CD4 count -expressed in adults as the absolute number of CD4 cells per microliter of blood, and in children as a 
percentage of total lymphocytes or total T lymphocytes- has enormous prognostic and therapeutic implications, and 
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forms the basis for most HIV treatment decisions [4–6]. In developed countries, CD4 counts are typically performed 
every three to six months for each patient using the method of flow cytometry. Flow cytometers use lasers to excite 
fluorescent antibody probes specific for CD4 and other cell surface markers, to distinguish one type of lymphocyte from 
another. Several factors -including the cost of a flow cytometer (which ranges from $35,000 to $160,000), technical and 
operational complexity, the need for reliable electricity, and the high cost of reagents—have made these + instruments 
impractical and/or difficult to sustain in resource-scarce settings. The urgent need for affordable and technically simple 
CD4 diagnostics is widely recognized [7–11]. 

Several efforts have been made to develop alternative, affordable CD4 counting methods for resource poor settings. 
Single-purpose flow cytometers have been designed solely for counting CD4 cells, such as the Becton Dickinson 
FACSCount, the Partec CyFlow, and desktop instruments from Guava and PointCare Technologies. Although these newer 
versions make flow cytometry more affordable in some settings, reagent costs remain high, and the instruments remain 
expensive and in most cases, technically complex [7–13]. Low-cost microbead separation of CD4 cells from other blood 
cells, followed by standard manual cell counting techniques using a light microscope, offers significantly lower reagent 
costs than flow cytometry. These methods, however, are low throughput and extremely labor intensive, and appear to 
be less accurate than traditional flow cytometry; thus, they have not been widely adopted [13–18]. 

Less expensive CD4 counting methods that capitalize on low-cost micro-fabrication, efficient light sources, and 
affordable microelectronics and digital imaging hardware have been conceptualized, but never realized [19, 20]. One of 
the Pioneer called (JTM) has previously reported the development of a novel microchipbased detection system for 
measuring analytes such as acids, bases, electrolytes, and proteins in solution phase [21–23]. This electronic taste chip 
(ETC) system carries out chemical and immunological reactions on microspheres positioned in the inverted pyramidal 
microchamber wells of a silicon or plastic microchip, which is housed in a miniature flow cell. Microfluidic channels 
deliver a series of small-volume reagents and washes to the flow cell, and hence to the chip and to each one of the 
microspheres. Optical signals generated by the reactions on the microspheres are visualized and captured on a charge-
coupled device (CCD) with the use of transfer optics and a digital video chip. Using the ETC system, complex 
immunological assays, such as the ones developed to quantify cardiac risk factors in serum, can be performed with small 
sample volumes, short analysis times, and markedly reduced reagent costs [22]. 

Further development of the ETC system has shown that it could be adapted to the detection of bacteria, spores, and 
living cells [24]. Here the hypothesis that brings additional modifications could be made to provide accurate, low-cost 
CD4 counts to monitor HIV infection in resource-constrained settings. Therefore, it shown that a microchip-based 
system can perform CD4 counts from 15.5 μl of whole blood rapidly, simply, and with a high degree of accuracy 
compared to flow cytometry, particularly for patients with CD4 counts below 500 cells/μl. Hence, it is suggest how this 
prototype system can be readily developed as a low-cost, portable device for use in resource-poor settings.  

2. Methods 

2.1. Flow Cell 

 

Figure 1 Components of the ETC System 
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The ETC system was originally designed for microsphere-based assays [21–23]. The modified version of the flow cell 
(see Figure 1) is enclosed within a three-piece metal casing with a flat platform permanently affixed to a circular vertical 
support, which is in turn connected to a screw-on cap. Within the metal casing there are top and bottom plastic inserts 
made from PMMA. Fluids are introduced to and drained out of the flow cell through integrated stainless steel tubing 
within the inserts. The bottom PMMA insert also features a plastic screen disc that acts as a support for a 3-μm 
Nuclepore polycarbonate, track-etch filter (Whatman, Florham Park, New Jersey, United States), which serves as a 
lymphocyte capture and red blood cell separation membrane. A gasket between the membrane and the top insert 
prevents leaks and ensures that the entire sample is delivered into the flow cell and filtered through the membrane. The 
top outlet is used with lateral flow for the removal of air bubbles. 

2.2. Components of the ETC System 

2.2.1. Fluid Delivery System 

In initial studies, we used a single peristaltic pump to deliver sample and washes to the flow cell. 

Subsequently, a partially automated fluid delivery system was developed. This functional adaptation uses two miniature 
OEM peristaltic pumps, each in conjunction with a pinch valve, and 0.031-in. (0.79-mm) silicone tubing capable of 
delivering flow rates of 46–920 μl/min to the flow cell. Integrated software (LabVIEW, National Instruments, and Austin, 
Texas, United States) directs delivery of whole blood samples and washes to the flow cell using the appropriate pumps 
and valves. Sample filtrate, including red blood cells, is captured in a waste reservoir. 

2.2.2. Optical Station and Image Capture 

The flow cell was positioned on the stage of a modified BX2 Olympus (Tokyo, Japan) compound microscope equipped 
with a 10× objective lens and a high-pressure 100 W mercury burner arc lamp as a light source. Focusing was 
maintained on a fixed plane throughout the duration of the assay. 

Visualization of AlexaFluor-647-stained lymphocytes was achieved using a Cy5 filter cube (620 nm excitation, 660 nm 
long-pass beam splitter dichroic mirror, and 700 nm emission), while AlexaFluor-488-stained lymphocytes were 
visualized with a fluoroisothiocyanate (FITC) filter cube (480 nm excitation, 505 nm long-pass beam splitter dichroic 
mirror, and 535 ± 25 nm emission). For each study participant, images were obtained from each of five nonoverlapping 
regions of the lymphocyte capture membrane in the flow cell, using a 12-bit CCD digital camera (DVC, Austin, Texas, 
United States) mounted on the microscope. Each imaged region represented 0.18 μl of whole blood, so that for each 
assay, cells were counted from a total volume of 0.9 μl of blood. Each region was imaged serially with both filter cubes. 
The corresponding images were stored separately as monochromatic eight-bit images for subsequent digital image 
analysis and automated cell counting. 

2.2.3. Image Analysis 

Images were analyzed using a custom algorithm supported by Image-Pro Plus (Media Cybernetics, Silver Spring, 
Maryland, United States) processing software. An iterative approach allowed for flexible analysis of data acquired under 
different conditions of illumination, focus, and sampling. For each iteration, an upper and lower value defined a range 
of green or red intensities that were then used to segment the image. Pixels whose intensity values fell within the defined 
range were reassigned values of one, while all others were set to zero. The process yielded a binary version of the 
original eight-bit image. A lymphocyte selection algorithm was then applied. Objects (i.e., lymphocytes) were defined as 
contiguous groups of pixels with values of one. Object selection was refined by a lymphocyte profile (defined by size, 
aspect ratio, and uniformity); objects not fitting the profile were not counted. The number of counted objects was 
recorded for each iteration. From one iteration to the next, the upper and lower intensity limits used to segment the 
image were both increased by a single intensity count. 

The final cell count per image was the maximum object count over 256 iterations (upper intensity limits 1→255) for 
which the average object roundness fell below a threshold value. In this manner, the software algorithm determined the 
optimal analysis parameters for each image individually, greatly relaxing the stringency of image capture requirements. 
Cell counts were recorded in a spread sheet as numbers of CD4+ CD3-, CD4+ CD3+, CD4- CD3+, CD8+ CD3-, CD8+ CD3+, 
CD8- CD3+, and CD4+ CD8+ cells, depending on the combination of antibodies used. Absolute CD4 counts were recorded 
as the summed number of CD4+ CD3+ cells counted over five images, normalized per microliter of imaged blood. 

CD4: CD8 ratios were recoded as the ratio of CD4+ CD3+ cells to CD8+ CD3+ cells counted over five images. 
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Relative CD4 abundance as a percentage of total T lymphocytes was recorded as 100 times the ratio of CD4+ CD3+ cells 
to total CD3+ cells, with cells counted over five images [18-20]. 

2.2.4. Lymphocyte Staining and Delivery 

Antibodies utilized in these studies were stored at 4 °C and centrifuged to remove precipitated material prior to use. 
This process ensured removal of fluorescent particulate matter that could be captured by the membrane and might 
interfere with imaging. For the initial dilution control studies, CD4 cells were purified by immunomagnetic separation 
from donor buffy coats. CD4 cells labeled with AlexaFluor-488-conjugated anti-CD4 antibodies (A21335, clone 289–
14120, Molecular Probes, Eugene, Oregon, United States) were introduced to the flow cell in amounts ranging from zero 
to 200,000 cells, and washed with phosphate buffered saline (PBS). For whole blood studies, 33 μl of whole blood 
collected by venipuncture was incubated at ambient temperature (20–25 °C) with 3 μl of AlexaFluor-488- and 

AlexaFluor-647-conjugated antibodies to CD4 and CD3 (A21332, clone 289–13801, Molecular Probes), respectively, and 
allowed to react for 8 min. Similarly, for CD8 enumeration, 33 μl of whole blood with 3 μl of AlexaFluor-488- and 
AlexaFluor-647-conjugated antibodies to CD8 (A21340, clone 289–13804, Molecular Probes) and CD3, respectively, 
was allowed to react for 8 min at ambient temperature. 

Stained blood samples were brought up to 1,000 μl with PBS, half of which was introduced directly into the flow cell 
(representing 16.5 μl of the original sample of blood) and then washed with 1 ml of PBS. 

Because red blood cells are mechanically separated from white blood cells, red blood cell lysis is not necessary. Images 
of labeled cells captured on the membrane were obtained and analyzed as described above. For SEM (scanning electron 
microscopy), a fixative (2% paraformaldehyde/2.5% glutaraldehyde) was added into the flow cell and rinsed with PBS. 
The filter was removed from the flow cell, fixed for 90 s with OsO vapor, and then dehydrated with EtOH/HMDS. The 
same SEM protocol was applied to a drop of whole blood on a glass slide. 

Study Participants and Comparison to Flow Cytometry 

Blood was obtained from HIV-1-uninfected control participants and HIV-infected participants at the Malali Clinic, 
Kaduna-Nigeria and from HIV-infected participants at the General Hospital Kawo Kaduna-Nigeria. 

The Malali Clinic samples originated from a study of HIV-infected pregnant women attending maternal–child health 
clinics in Kaduna and three nearby villages, (Kawo, Rafin Guza and Hayin Na’iya). Ten infants were also included in the 
study. Three milliliters of venous whole blood was collected from each participant (in EDTA anticoagulant). All samples 
were run on the microchip on the day of blood collection. Parallel samples were processed using standard four-color 
flow cytometry on a Becton 

Dickinson FACSCalibur, using the MultiTEST reagents and TruCOUNT beads, and analyzed using MultiSET software. All 
samples were processed by flow cytometry according to standard operating procedure in the HIV reference laboratory 
in Nigeria. The majority were processed within 24h of blood collection, and all were processed and analyzed within 72h 
of blood collection. A total of 60 participants were enrolled, including 54 adults and six infants. Five adults did not have 
flow cytometry results available, leaving 55 participants for analysis. The study was approved by Malali Clinic Chief 
Medical Director’s review boards of the participating client. For a preliminary assessment of assay variability, the blood 
from a single study participant was assayed as described above 25 separate times over the course of a single afternoon 
by a single operator. 

2.2.5. Statistical Methods 

The accuracy of the microchip-based CD4 counting system was determined by comparing results directly to parallel 
samples processed by flow cytometry using Passing–Bablok regression analysis and the Bland–Altman methods 
comparisons approach [25, 26]. For assay reproducibility, a coefficient of variance was calculated from 20 replicates of 
a single participant. Data were analyzed and processed using Analyse-It software (Analyse-It Software, Leeds, United 
Kingdom). 

3. Results  

In initial experiments using the original ETC system [21–23], microspheres were coated with monoclonal antibodies to 
the lymphocyte surface markers CD3, CD4, or CD8, followed by microfluidic delivery of fluorescently labeled 
lymphocytes from whole blood obtained from non-HIV-infected participants. Although lymphocytes were readily 
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captured, precise quantification of cell numbers and CD4 cell counts were not possible using the microsphere as a 
surface for lymphocyte capture (data not shown). We next modified the flow cells with a disposable, microporous 
membrane filter for lymphocyte capture. A single polycarbonate, track-etch membrane with 3-μm pores was 
immobilized and secured within the flow cell, creating a lymphocyte capture surface with a surface area of 80 mm. 

Whole blood samples were delivered to the flow cell from a sample reservoir tube, and the membrane within the flow 
cell was washed with PBS from a second reservoir. As in the original ETC system, cells were imaged under fluorescence 
optics using a mercury arc lamp light source and a CCD camera (Figure 1). 

To confirm that cells could be adequately captured, 33 μl of unprocessed whole blood from non-HIV infected 
participants was incubated for 8 min with fluorophore-conjugated anti-CD4 antibodies, and delivered by a peristaltic 
pump to the modified microfluidics chip. Red blood cells passed readily through the pores under appropriate fluid flow 
conditions. In contrast, the majority of white blood cells were captured onto a single imaging focal plane (Figure 2). This 
mechanical separation of autofluorescent red blood cells allows for the imaging and counting of white blood cells from 
unprocessed whole blood without additional sample processing, such as centrifugation or red blood cell lysis. Using the 
digital imaging system originally developed for microsphere-based capture in the ETC system, fluorescently labeled 
white blood cells can then be imaged directly on the chip and counted. 

 

Figure 2 Membrane Flow Cell 

3.1. The Selectively Captures Lymphocytes and Provides for the Removal of Red Blood Cells. 

3.1.1. Sample Processing 

To assess the analytical validity of the membrane-based microchip system, we first performed a dilution control study 
to evaluate the correlation between total fluorescence intensity and the absolute number of purified CD4 cells from non-
HIV-infected participants (labeled with fluorophore-conjugated anti-CD4 antibody) captured in the microchamber. The 
results show a linear correlation between the number of cells in the sample and the intensity of light emitted from the 
membrane filter (R = 0.999) for a range of CD4 cell counts relevant to advanced HIV disease (0–200 CD4 cells/μl blood) 
(Figure 3). 

 

Figure 3 CD4 Lymphocyte Dose Responses 
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This dose–response study established proof of the concept that a modified microfluidic flow cell and a digital image 
analysis system can accurately detect and measure populations of whole blood lymphocytes labeled with fluorescent 
markers. 

3.1.2. CD4 Lymphocyte Dose Response 

Next, quantified the percentages of CD3, CD4, and CD8 cells in whole blood samples from healthy control participants 
using this system. Prior to delivery to the flow cell, then it has been labeled a 33-μl whole blood sample with 3 μl of 
fluorophore-conjugated anti-CD3 and anti-CD4 antibodies for 8 min off chip, then diluted the sample with 961 μl of PBS, 
and delivered 500 μl of the resulting sample (containing 16.5 μl of blood) to the flow cell using a fluidics controller. 
Digital images from one region of the lymphocyte capture membrane were obtained with two different emission filters, 
one specific for the AlexaFluor-488-conjugated antibody used to stain CD4+ T lymphocytes green (Figure 4A), and the 
other specific for the AlexaFluor-647-conjugated antibody used to stain CD3+ T lymphocytes red (Figure 4B). 
Automated digital merging of the two images and image processing allowed the system to distinguish the CD3+ CD4+ T 
lymphocytes of interest (i.e., “CD4 cells”), which appear yellow, from the CD4+ CD3- monocytes (green) and the CD3+ 
CD4- T lymphocytes (red) (Figure 4C). 

 

Figure 4 Data Collection and Processing for Digital Images 

3.2. Data Collection and Processing for Digital Images Obtained from a Single Diluted Whole Blood Specimen 
from an 

3.2.1. HIV-Infected Participant 

Next developed a custom algorithm for translating these digital images into accurate CD4 and CD8 T cell counts using 
pixel analysis with the aid of a commercial image processing package. Automated counting of the three subsets of cells 
was based on object size, aspect ratio, and uniformity, iterated across the range of color intensity levels. As shown in 
Figure 4D, a binary mask first removes the unwanted cell types, and residual objects representing CD4 T cells are 
counted. A similar protocol was applied to a second aliquot of blood stained with AlexaFluor-647-conjugated CD3-
specific antibody and AlexaFluor-488-conjugated CD8-specific antibody to visualize and count CD3 CD8 T lymphocytes. 

In order to calculate an absolute CD4 count with standard flow cytometry, one of two measures must be undertaken to 
calculate a concentration in cells per microliter. Either a standardized reference reagent, such as calibration beads at a 
known concentration, can be added to the assay (“single-platform” flow cytometry), or an absolute total lymphocyte 
count in cells per microliter can be obtained on a hematology analyzer (“dual-platform” flow cytometry). The microchip 
assay we describe here uses a direct volumetric method and functions as a single-platform approach. By delivering a 
consistent volume of blood to the flow chamber (16.5 μl of stained whole blood, diluted to a total volume of 500 μl of 
PBS), and calculating the unit volume of blood per digital image (0.18 μl), we were able to count the total number of CD4 
CD3 cells in 0.9 μl of blood, and determine the absolute CD4 count per microliter. 

Next tested this rapid, whole blood microchip assay in a series of samples acquired in an HIV reference laboratory in 
Nigeria. Sixty consecutive HIV-infected participants presenting to the HIV reference laboratory for standard CD4 
counting as part of a vertical transmission study were enrolled, of whom 54 were adult women and six were infants. 
Parallel samples were processed by standard four-color flow cytometry on a Becton Dickinson FACSCalibur. The time 
from blood collection to complete analysis and results reporting using the chip-based assay was approximately 15 min 
per sample. Five adult participants did not have valid flow cytometry results available, leaving 55 adults and six infants 
for analysis. 
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Representative processed data images from five participants, three adult women and two infant, are shown in Figure 5. 
Figure 5A shows a 31-y-old woman with an absolute CD4 count by flow cytometry of 83 cells/μl. While numerous CD3 
T cells (red) are present as well as scattered monocytes (green), her low CD4 count is reflected in the few double-labeled 
CD3 CD4 T cells (yellow) seen in the image. 

 

Figure 5 Representative Processed Data Images from Three Participants in Malali Clinicm Kaduna 

Similar representative data images from a young woman with a CD4 count of 271 cells/μl by flow cytometry and a 5-
mo-old infant with a CD4 percentage of T lymphocytes of 0.39 by flow cytometry are also shown in Figure 5B and 5C, 
respectively. These images illustrate the dynamic range of the membrane capture and digital image analysis system, 
including the ability to quantify both absolute CD4 counts and CD4 percentages. 

3.2.2. Representative Processed Data Images from Three Participants in Nigeria 

The compared results from the microchip assay with results available from flow cytometry, the latter obtained on a 
FACSCalibur through standard clinical laboratory operating procedures. The data for adult absolute CD4 counts are 
plotted in the Bland–Altman methods comparison plot shown in Figure 6. 

 

Figure 6 Methods Comparison and Correlation Studies for Absolute CD4 Counts in 61 Adults in Nigeria 

For 61 adult participants with CD4 counts ranging from 35 to 1,087 cells/μl (mean, 372 cells/μl) by flow cytometry, 
results show a good correlation between absolute CD4 counts measured by our microchip assay and those measured 
by flow cytometry. Bland–Altman methods comparison analysis shows a bias of −50 cells/μl (95% confidence interval, 
−81 to −20 cells/μl), and good 95% limits of agreement (Fig. 6).  

Several of the results from participants at the higher end of absolute CD4 counts fall outside the 95% limits. For these 
participants, individual lymphocytes may overlap in the digital images (as seen in Figure 5C), which can interfere with 
the accuracy of the lymphocyte counting algorithm. In resource-limited settings, the primary use of CD4 counts is as a 
trigger to initiate antiretroviral therapy, which typically occurs at a CD4 count of 200 cells/μl. Higher CD4 count 
thresholds of 350 and 500 cells/μl are also used to increase the intensity of monitoring. For these values, the sensitivity 
and specificity of the method are: CD4 < 250, sensitivity = 0.86, specificity = 0.81; CD4 < 350, sensitivity = 0.97, specificity 
= 0.83; and CD4 < 500, sensitivity = 0.96, specificity = 0.85. 
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3.3. Methods Comparison and Correlation Studies for Absolute CD4 Counts in 51 Adults in Kaduna-Nigeria. 

One important application of our method is in pediatric HIV monitoring. The wide range of normal absolute CD4 counts 
in infants and children requires the use of CD4: CD8 ratios or CD4 percentages in pediatric infection. Results for CD4: 
CD8 ratios and CD4 percentages of T lymphocytes for all 57 participants (51 adults and six infants) are shown in Figure 
7. Agreement, bias, and correlations between the microchip method and flow cytometry are excellent for both CD4 
percentages of T lymphocytes (Figure 7A and 7B) and CD4: CD8 ratios (Figure 7C and 7D). Bland–Altman plots for both 
CD4 percentages of T lymphocytes and CD4: CD8 ratios show low proportional bias, with tight 95% limits of agreement. 
Correlations are excellent for both CD4 percentages of T lymphocytes (r = 0.98, p < 0.0001) and CD4: CD8 ratios (r = 
0.98, p < 0.0001). Overall, the data show that all three approaches to measuring CD4 cell counts can be accurately 
quantified using the microchip method, and that both adult and pediatric CD4 results can be obtained. 

 

Figure 7 Methods Comparison and Correlation Studies for CD4 Percentages of Total T Cells and CD4:CD8 Ratios in 57 
Human Subjects 

3.4. Methods Comparison and Correlation Studies for CD4 Percentages of Total T Cells and CD4: CD8 Ratios in 
57 Human Subjects 

To determine assay variability, we examined 20 replicate samples of blood from a single participant over the course of 
one day, using the established basic protocol. We determined that the coefficient of variance was 12% (data not shown), 
which is similar to other methods of CD4 counting [27]. Although the assay described here introduced 16.5 μl of blood 
into the system, the actual volume of blood analyzed by digital image analysis is only 0.90 μl. We have conducted 
preliminary studies that suggest that we can accurately measure CD4 counts from less than 5 μl of blood obtained via 
fingerstick (data not shown); additional studies will be required to assess the correlation between CD4 counts obtained 
by fingerstick and by venipuncture. 

4. Discussion 

Our results provide proof of principle that low-cost microfluidic structures combined with fluorescence imaging and 
digital image analysis can be successfully applied to the measurement of CD4 cell counts, which are critical to the clinical 
management of HIV infection. The method described here can deliver both absolute CD4 counts for adult monitoring, 
and CD4 percentages or CD4: CD8 ratios for pediatric monitoring. Most importantly, the rapid and accurate CD4 
assessments obtained with this method, together with its anticipated low cost relative to flow cytometry, may make this 
type of approach ideal for resource-scarce settings. As our results show, this method may be less accurate at the higher 
range of CD4 counts, where cells may be more likely to overlap in our digital images. While this may limit its 
applicability, our method is accurate at CD4 counts below 500 cells/μl, which represent the clinically relevant CD4 levels 
in resource-poor settings. In addition, both the bias in the method described here (−50 cells) and the accuracy at higher 
CD4 counts are likely to be improved significantly by the further development of a disposable microfluidic cartridge, 
where the volume of distribution of the sample will be much smaller, and more accurate volumetric control will be 
possible. 
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Our study was designed to evaluate the accuracy of our method against the gold standard in a population of adults. 
During enrollment, a small number of pediatric samples were made available to us by the staff at Malali Hospital and 
maternity Clinic, Kaduna-Nigeria. We chose to include these samples in the data presented here to provide proof of 
principle that pediatric CD4 percentages can also be assessed with this method. Although only six pediatric samples 
were available, limiting claims of statistical significance, we believe the issue of pediatric CD4 count monitoring to be of 
such importance that the data merited inclusion. Excluding the six pediatric samples does not affect the analysis. 

The results presented here were obtained with a stationary, tabletop monitoring system using a standard 
epifluorescence microscope and commercial image processing software. While the methods we described provide the 
basis for a highly portable and flexible miniaturized CD4 counting system, it should be emphasized that a number of 
additional developments are required to enable the widespread use of this approach in resource-limited settings. With 
additional engineering of optics, electronics, and mechanical components along with advancements in integrated 
microfluidic systems, it should be possible to develop a point-of-care instrument that is battery-powered, uses simple 
light emitting diodes (LEDs), and secures analyzable digital images with affordable video imaging chips. 

When combined with an embedded microprocessor and disposable assay cartridges for both adult and pediatric 
monitoring manufactured from injection-molded plastic, it should be possible to create a functional CD4 counting device 
that can be used at the point of care. Further trials in a larger, more diverse cohort of patients, including adult men and 
children, it should be necessary to confirm the accuracy of the method, including an assessment of assay bias and 
reproducibility. Such a device is currently in commercial development, and may be available by early 2026. While it is 
too early to provide an accurate cost estimate for a portable instrument and disposable plastic CD4 assay, thereby, it is 
expected that the equipment cost would be substantially lower than for flow cytometry, and the assay cost would be 
similar to assays using existing methods (Table 1). 

Table showing Comparison of Methods for CD4 Determination  

Table 1 Comparison of Methods 

Matrix Analyte Calibration 
Range 

R2 Sample 
Rate 

Colorimatry Multi-Vitamin 
Capsules 

Tocopherol 
Acetate 

0.2 – 11.0 0.9996 6 

Spec. Drugs Fomulation Retinol 2.0 – 2.5 0.9998 NG 

Spec FL Nutritional 
Supliments 

Tocopherol 0 – 5.5 0.9994 NG 

HPLC-DAD Infant Milk Fomulae Retinol Acetate 0.2 – 5 0.9999 NG 

HPLC-FL Bevrages Retional 2 – 10.0 0.9993 NG 

HPLC-UV Milk-based products Tocopherol 0.02 – 3.42 0.9997 NG 

HPLC-FL Human serum and 
plasma 

Retinol 
Palmitable 

0.09 – 10.38 0.9997 NG 

MLC-UV Multi-Vitamin Syrup Tocopherol 
Acetate 

0.5 – 2.5 0.9774 NG 

HPLC-DAD Food and 
Pharmaceutical 
Supliment 

Retinol Acetate 2.0 – 6.0 0.9850 100 

FI-CL Pharmaceutical Tocopherol 
Acetate 

0.15 – 1.2 0.9983 100 

 NG, not given: Spec, Sectrophotometry: Spec FL, Spectrofluorometry: HPLC-DAD, 
higher perfomance liquid chromatography-diode array detector: MLC-UV, micellar 
liqiud chromatography: FI-CL, flow-injection-chemiluminescence. 
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4.1. A Comparison of Methods for CD4 Determination 

Although several CD4 counting systems are now used in resource-limited settings, they remain suboptimal to meet the 
needs of HIV care and treatment scale-up. None can truly be used at the point of care beyond a district hospital or similar 
facility, and either the capital or operating costs remain high, or throughput is low, or both (Table 1). Pediatric 
monitoring using CD4 percentages also remains largely unavailable. The method we describe here addresses several of 
the limitations of performing diagnostic assays in resource-limited settings. First, sample volumes are minimal, so that 
tests can be performed on fingerstick samples of blood, circumventing the need for venipuncture, and minimizing both 
medical waste and operator exposure to biohazardous material. Second, reagent use is minimized in the microchip 
system, reducing reagent costs by as much as 90%. Third, labor- and equipment-intensive sample preparation is 
eliminated. Fourth, the microchip CD4 assay is extremely rapid. CD4 results in the prototype system described here are 
available in less than 15 min from the time of blood collection. 

In a mature microfluidic device with push-button operation, results should be available in less than 10 min, and thus 
can be used to make real-time clinical decisions at the point of care. Fifth, the assay is technically simple, analogous to a 
portable glucometer, and ultimately will be useable by a health-care worker in remote settings with minimal training, 
extending the reach of CD4 assays to district hospitals and remote clinics, and reducing labor costs. Sixth, both adult 
and pediatric monitoring are possible. 

It is believe that the future of low-cost diagnostics for use in the developing world lies in the development of new lab-
on-a-chip technologies that integrate sample preparation and sample measurement systems into miniaturized devices 
with minimal power requirements. Preliminary cost estimates for the instrumentation here described suggest, at a 
minimum, a 10-fold reduction in the cost for the associated measurement system. Further, reagent consumption for the 
microchip system can be reduced by a similar factor relative to flow cytometry, while sample storage and shipping costs 
are expected to be reduced dramatically by virtue of the point-of-care capabilities of this new lab-on-a-chip structure. 
The importance of microtechnologies to the realities of laboratory infrastructure worldwide has been recognized 
previously [28–30]. Although CD4 counting represents the most urgent need in HIV diagnostics for resource-poor 
settings, the microchip platform is adaptable to other important assays. 

Through the interface of the lymphocyte capture membrane described here with the previously reported microchip 
arrays, cellular assays like CD4 counts can be multiplexed with other molecular biomarker measurements (i.e., proteins 
and nucleic acids) on a single miniaturized chip. The rapid extension of the chip-based CD4 counting method described 
here to HIV RNA measurements, diagnostics for opportunistic infections, liver enzymes, and other biochemical markers 
of interest in infectious disease is feasible  

5. Patient Summary 

5.1. Background 

Most HIV-infected people don't develop AIDS right away, because their immune systems can keep the virus in check for 
months and sometimes years. In general, doctors don't recommend that infected people start taking HIV medications 
while their immune system is still healthy. Doctors know whether or not a patient's immune system is healthy-and 
therefore whether or not to start treatment-by measuring the "CD4 count." This is the number of CD4 cells in a sample 
of blood. CD4 cells, also called CD4+ T cells, are a type of white blood cell that fights infection. HIV destroys CD4 cells, 
weakening the body's immune system and ultimately causing AIDS. CD4 counts should be determined before a patient 
receives antiretroviral therapy and then measured regularly while the patient is on therapy. 

5.2. Why Was This Study Done? 

Most tools available to count CD4 cells are large and expensive to buy, and every actual count is also expensive and 
difficult to carry out. These tools are therefore unsuitable for many low-income countries. The Author wanted to develop 
a tool that allows easier and cheaper measurement of CD4 cells, and is small and simple enough that health-care workers 
can take it to patients when they visit them in remote areas. 

5.3. What Did the Researcher Do? 

The researcher built a prototype for a new tool that counts CD4 cells in a simpler and cheaper way. They then took 
samples from 61 adults and six children and compared the results when they used both the standard technologies and 
their prototype counter. 
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5.4. What Did He Find? 

The researcher found that their prototype works well and is indeed cheaper and easier to use. It also appears to be just 
as reliable as the large and more complicated machines in helping doctors make decisions about when to start therapy 
and when to change therapies. They have done enough samples from adults infected with HIV to be confident about 
that. It looks like it might work for infected children as well, but they haven't done enough child samples yet to be certain. 

5.5. What Does This Mean? 

This suggests that with some additional work, it should be possible to develop a hand-held CD4 counter that is cheap, 
easy, and transportable. This could make a big difference for the care of HIV patients in developing countries and other 
remote areas. 

5.6. What Next? 

There is still more development work to do to get from the prototype to a handheld counter, and the researcher should 
also study more samples from children to see whether the new test is equally reliable for pediatric patients. 

6. Conclusion 

At the end of this study, it has been observed that the CD4 T- Lymphocytes is very important in the management of HIV 
patients. 

However the result from this study shown that it will helped in the comparative studies in medical field for the 
identification of viral load in the human serum. 
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