Quantum computational calculations of a series of tetrathiafulvalene derivatives linked to N-methylthiocarbamoyl group

Authors

  • Abbaz Tahar Laboratory of Aquatic and Terrestrial Ecosystems, Org. and Bioorg. Chem. Group, University of Mohamed-Cherif Messaadia, Souk Ahras, 41000, Algeria.
  • Bendjeddou Amel Laboratory of Aquatic and Terrestrial Ecosystems, Org. and Bioorg. Chem. Group, University of Mohamed-Cherif Messaadia, Souk Ahras, 41000, Algeria.
  • Villemin Didier Laboratory of Molecular and Thio-Organic Chemistry, UMR CNRS 6507, INC3M, FR 3038, Labex EMC3, ensicaen and University of Caen, Caen 14050, France.

DOI:

https://doi.org/10.30574/gscbps.2018.3.2.0031

Keywords:

Tetrathiafulvalenes, Density functional theory, Computational chemistry, Quantum chemical calculations

Abstract

We investigate in this study, the quantum chemical computations of a series of tetrathiafulvalene derivatives linked to N-methylthiocarbamoyl group 1-4 using the DFT/B3LYP method with 6-31G (d,p) basis set. The optimized structures and geometrical parameters were determined by the same method cited above. In addition, a molecular electrostatic potential map (MEP) has been analyzed for predicting the reactive sites. The calculated HOMO and LUMO energies showed that charge transfer occurs within the molecule. The chemical reactivity parameters (chemical hardness and softness, electronegativity, chemical potential and electrophilicity index) were discussed clearly. To find out more reactive sites of the title molecules, condensed Fukui functions have been also calculated. Stability of the compounds arising from hyper-conjugative interaction and charge delocalization has been analyzed using Natural bond orbital (NBO) analysis. NLO properties related to polarizability and hyperpolarizability are also discussed to predict the applications of title compounds.

Metrics

Metrics Loading ...

References

Otsubo T, Aso Y and Takimiya K. (1996). Dimeric tetrathiafulvalenes: New electron donors. Advanced Materials, 8, 203-211.

Adam M and Müllen K. (1994). Oligomeric tetrathiafulvalenes: extended donors for increasing the dimensionality of electrical conduction. Advanced Materials, 6, 439.

Bryce MR, Davenport W, Goldenberg LM and Wang C. (1998). Macromolecular tetrathiafulvalene chemistry. Chemical Communications, 945-952.

Shao X, Yamaji Y, Sugimoto T, Tanaka H, deCaro D and Valade L. (2009). Template-free growth of micro/nanocrystals of magnetic molecular conductor by electrocrystallization on platinum electrode. Chemistry of Materials, 21, 5569-5571.

Martin N, Sánchez L, Herranz MÁ, Illescas B and Guldi DM. (2007). Electronic communication in tetrathiafulvalene (ttf)/c60 systems: toward molecular solar energy conversion materials. Accounts of Chemical Research, 40, 1015-1024.

Takano Y, Herranz MA, Martin N, Radhakrishnan SG, Guldi DM, Tsuchiya T, Nagase S and Akasaka T.(2010). Donor−acceptor conjugates of lanthanum endohedral metallofullerene and π-extended tetrathiafulvalene. Journal of the American Chemical Society, 132, 8048-8055.

Wenger S, Bouit PA, Chen Q, Teuscher J,Censo DD, Humphry-Baker R,Moser JE, Delgado JL, Martin N, Zakeeruddin SM and Grätzel M. (2010). Efficient electron transfer and sensitizer regeneration in stable π-extended tetrathiafulvalene-sensitized solar cells. Journal of the American Chemical Society, 132, 5164-5169.

Bryce MR. (1999). Tetrathiafulvalenes as π‐electron donors for intramolecular charge‐transfer materials. Advanced Materials, 11, 11-23.

Meneses L, Araya A, Pilaquinga F, Contreras R and Fuentealba P. (2007). Local hardness: an application to electrophilic additions. Chemical Physics Letters, 446,170-175.

Padmanabhan J, Parthasarathi R, Subramanian V and Chattaraj PK. (2007). Philicity based site activation model towards understanding the markovnikov regioselectivity rule. Journal of Molecular Structure: THEOCHEM, 804, 17-20.

Aizman A, Contreras R, Galvan M, Cedillo A, Santos JC and Chamorro E. (2002). The markovnikov regioselectivity rule in the light of site activation models. Journal of Physical Chemistry A, 106, 7844-7849.

Suresh CH, Koga N and Gadre SR. (2001). Revisiting markovnikov addition to alkenes via molecular electrostatic potential. Journal of Organic Chemistry, 66, 6883-6890.

Starodub VA and Starodub TN. (2014). Radical anion salts and charge transfer complexes based on tetracyanoquinodimethane and other strong π-electron acceptors. Russian Chemical Reviews, 83, 391-438.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B and Petersson GA. (2010). Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, USA.

Chidangil S, Shukla MK and Mishra PC. (1998). A molecular electrostatic potential mapping study of some fluoroquinolone anti-bacterial agents. Journal of Molecular Modeling, 4, 250-258.

Luque FJ, Lopez JM and Orozco M. (2000). Perspective on electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”. Theoretical Chemistry Accounts, 103,343-345.

Fleming I. (1976). Frontier Orbital and Organic Chemical Reactions, Wiley, London.

Subramanian N, Sundaraganesan N and Jayabharathi J. (2010). Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1, 2-bis (3-methoxy-4-hydroxybenzylidene) hydrazine by density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular, 76,259-269.

Socrates G. (1980). Infrared characteristic group frequencies, Publications, Wiley Interscience.

Varsanyi G. (1969). Vibrational spectra of benzene derivatives, academic press, New York.

Parr RG and Yang W. (1989). Density functional theory of atoms and molecules, Oxford University Press, Oxford.

Ott JB and Goates JB. (2000). Calculations from statistical thermodynamics, Academic Press.

Parr RG, Szentpaly LV and Liu SJ. (1999). Electrophilicity index. Journal of the American Chemical Society, 121, 1922-1929.

Chattraj PK, Maiti B and Sarkar UJ. (2003). Philicity: a unified treatment of chemical reactivity and selectivity. Journal of Physical Chemistry A, 107, 4973-4981.

Parr RG, Donnelly RA, Ley M and Palke WE. (1978). Electronegativity: the density functional viewpoint. Journal of the American Chemical Society, 68, 3807-3816.

Parr RG and Pearson RG. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105, 7512-7516.

Pearson RG. (1988). Absolute electronegativity and hardness: application to inorganic chemistry. Inorganic Chemistry, 27,734-740.

Parr RG and Yang W. (1984). Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society, 106, 4049-4050.

Yang W and Mortier WJ. (1986). The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. Journal of the American Chemical Society, 108, 5708-5711.

Khaled KF. (2010). Studies of iron corrosion inhibition using chemical, electro-chemical and computer simulation techniques. Electrochimica Acta, 55, 6523-6532.

SchwenkeDW and TruhlarDG. (1985). Systematic study of basis set superposition errors in the calculated interaction energy of two hf molecules. Journal of Chemical Physics, 82, 2418-2426.

Gutowski M and Chalasinski G. (1993). Accuracy of the boys and bernardi function counterpoise method. Journal of Chemical Physics, 98, 4728-4737.

Prabakaran A and Muthu S. (2014). Normal coordinate analysis, molecular structure, vibrational and electronic spectral investigation of 7-(1, 3-dioxolan-2-ylmethyl)-1, 3-dimethylpurine-2,6-dione by ab initio HF and DFT method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 578-588.

Geskin VM, Lambert C and Bredas JL. (2003). Origin of high second-and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups. Journal of the American Chemical Society, 125, 15651-15658.

Kleinman DA. (1977). Nonlinear dielectric polarization in optical media. Physical Review, 126, 1962-1979.

Christiansen O, Gauss J and Stanton JF. (1999). Frequency-dependent polarizabilities and first hyperpolarizabilities of CO and H2O from coupled cluster calculations. Journal of Physical Chemistry Letters, 305, 147-155.

Kleinman A. (1962). Nonlinear dielectric polarization in optical media. Physical Review, 126, 1977-1979.

Downloads

Published

2018-05-30

How to Cite

Tahar, A., Amel, B., & Didier, V. (2018). Quantum computational calculations of a series of tetrathiafulvalene derivatives linked to N-methylthiocarbamoyl group. GSC Biological and Pharmaceutical Sciences, 3(2), 11–23. https://doi.org/10.30574/gscbps.2018.3.2.0031

Issue

Section

Original Article