Study of different factors affecting Agrobacterium- mediated genetic transformation in lentil (Lens culinaris Medik.)

Authors

  • S. K. Das Department of Botany, University of Barisal, Barisal-8200, Bangladesh.
  • M. I. Hoque Department of Botany, University of Dhaka, Dhaka-1000, Bangladesh.
  • R. H. Sarker Department of Botany, University of Dhaka, Dhaka-1000, Bangladesh.

DOI:

https://doi.org/10.30574/gscbps.2018.5.1.0087

Keywords:

Lentil, Bacterial density, Incubation, Co-cultivation, Agrobacterium, Transformation

Abstract

The present work was aimed to study the various factors affecting Agrobacterium tumefaciens mediated genetic transformation of three BARI masur variety of lentil (Lens culinaris Medik.), namely, BM-4, BM-5 and BM-6. Agrobacterium strain LBA4404 containing plasmid pBI121 which carrying gus and nptII as screenable and selectable marker genes, respectively, was used for transformation. Factors affecting transformation efficiency, such as, type of explants, bacterial density, incubation time and co-cultivation period were studied. The result showed that decapitated embryo (DE) explants of BM-6 variety of lentil inoculated in Agrobacterium suspensions at density of 1.0 (OD600) for 45 minutes and co-cultivated on MS medium with hormones in the dark for 3 days gave the highest transient expression of gus gene (86.90%). The lowest percentage (15.00%) of GUS +ve explants observed in cotyledonary node (CN) of BM-5 variety of lentil when they were inoculated in Agrobacterium suspensions at density of 0.5 (OD600) for 15 minutes. Using this protocol agronomical and economically important trait could be transfer to the locally grown lentil varieties.

Metrics

Metrics Loading ...

References

Monti L, Biddle Aj, Moreno MT and Plancquarte P. (1994). Biotic and abiotic stresses of pulse crops in Europe. In: F. J. Muehlbauer and K. J. Kaiser (Eds.), Expanding the Production and Use of Cool season Food Legumes, Kliuwer Academic Publishers, Dordrecht, the Netherlands, 204 -18.

Saxena MC. (1993). The challenge of developing biotic and abiotic stress resistance in cool-season food legumes. In: K. B. Singh and M. C. Saxena (Eds.), Breeding for stress Tolerance in cool season FOOD LEGUMES, Wiley, Chichester, United Kingdom, 3-14.

Slindard AE, Bascur G and Hernandez-Bravo G. (1994). Biotic and abiotic stesses of cool-season food legumes in the Western Hemisphere. In: F. J. Muehlbauer and K. J. Kaiser (Eds.), Expanding the Production and Use of Cool season Food Legumes, Kliuwer Academic Publishers, Dordrecht, The Netherlands, 195-203.

Arokiaraj P, Rueker F, Obermayr E, Shamsul Bahri AR, Hafsah J, Carter DC and Yeang HY. (2002). Expression of human serum albumin in transgenic Hevea brassilensis. J. Rubber Research, 5, 157 -66.

Gulati A, Schryer P and McHugen A. (2002). Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment. In vitro Cell Dev. Biol.-Plant, 38, 316 -24.

Masood ZH, McMullen MD and Finer JJ. (1996). Transformation of 12 different plasmids into soyabean via particle bombardment. Plant Cell Reports, 15, 500 -05.

Öktem HA, Mahmoudian M, Eyidodan F and Yucel M. (1999). GUS gene delivary and expression in lentil cotyledonary nodes using particle bombardment. Lens Newsletter. 26(1 and 2), 3-6.

Gardner RC. (1993). Gene transformation into tropical and subtropical crops. Scientia Horticulture, 55, 65-82.

Ding LC, Hu CY, Yeh KW and Wang PJ. (1998). Development of insect resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Reports, 17(11), 854 -60.

Zhang FL, Takahata Y, Watanabe M and Xu JB. (2000). Agrobacterium-mediated transformation of cytoledonary expalnts of Chinese cabbage (Brassica campestris L. spp. pekinensis). Plant Cell Reports, 19, 569 -75.

Krishnamurthy KV, Suhasini K, Sagare AP, Meixner M, De Kathen A, Pickardt T and Schieder O. (2000). Agrobacterium-mediated genetic transformation of chickpea (Cicer arietinum L.) embryo axes. Plant Cell Reports, 19, 235 -40.

Herrea- Esterella L, Depicker A, Montagu M and Schell J. (1983). Expression of chimeric gene transferred into plant cells using a Ti-plasmid derived vector. Nature, 303, 209.

Hooykaas PJJ. (1988). Agrobacterium molecular genetics. Plant Molecular Biology Manual, 4, 1-13.

Jefferson RA, Kavanagh TA and Bevan MW. (1987). GUS fusion: Beta-glucoronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J., 6, 3901 -07.

Gould JH and Smith RH. (1997). A non-destructive assay of GUS in the media of plant tissue cultures. Plant Molecular Biology Reports, 7, 209 -16.

Jaiwal PK, Sautter C and Potrykus I. (1998). Agrobacterium rhizogenes mediated gene transfer in mung bean (Vigna radiata (L.) Wilczek). Current Science, 75, 41 -45.

Jaiwal PK, Kumari R, Ignacimuthu S, Potrykus I and Curistos S. (2001). Agrobacterium tumefaciens genetic transformation of mungbean (Vigna radiata L. wilczek.): A recalcitrant grain legume. Plant Science, 161, 239 -47.

Zhang H, Huang QM and Su J. (2010). Development of alfalfa (Medicago sativa L.) regeneration system and Agrobacterium- mediated genetic transformation. Agricultural Science, 9(2), 170 -78.

Abullah R, Zainal A, Heng WY, Li LC, Beng YC, Phing LM, Sirajuddin SA, Ping WYS, Joseph JL, Jusoh SA, Murad MR and Huey YL. (2005). Immature embryo: a useful tool for oil palm (Elaeis guineensis Jacq.) genetic transformation studies. J. Biotechnology, 8, 24 -34.

Kathen Ade and H Jacobsen. (1990). Agrobacterium tumefaciens mediated transformation of Pisum sativum L. using binary and co-integrate vectors. Plant Cell Reports, 9, 176 -79.

Horsch RB, Fry J, Hoffmann M, Wallroth M, Eichholtz D, Rogers S and Fraley RT. (1985).A simple and general method for transferring genes into plants. Science, 227, 1229 -31.

Arundhati, A. (1999). Agrobacterium mediated transformation of pigeon pea by using leaf disks. International Chickpea and Pigeon pea Newsletter, 6, 62-64.

Tewari-Singh N, Sen J, Kiesecker H, Reddy VS, Jacobson HJ and Mukherjee SG. (2004). Use an herbicide or lysine plus threonine for non-antibiotic selection of transgenic chickpea. Plant Cell Reports, 22, 576 -83.

Warkentin TD and McHughen A. (1992). Agrobacterium tumefaciens-mediated beta-glucoronidase (GUS) gene expression in lentil (Lens culinaris Medik.) tissues. Plant Cell Reports, 11, 274 -78.

Sarker RH, Mustafa BM, Biswas A, Mahbub S and Hoque MI. (2003). Agrobacterium –mediated transformation of lentil (Lens culinaris Medik.). Plant Tissue Culture, 13(1), 1-12.

Hassan F, Hoque MI, Kiesecker H and Jacobsen H. (2007). Transient Gus Expression in decapitated lentil embryos. Plant Tissue Cult. & Biotechnology, 17(1), 97-102.

Das SK, Shethi KJ, Hoque MI and Sarker RH. (2012). Agrobacterium mediated genetic transformation in lentil (Lens culinaris Medik.) followed by in vitro flowering and seed formation. Plant Tissue Cult & Biotechnology, 22(1), 13 -26.

Schroeder HE, Schotz AH, Wardely T, Richardson T, Richardson D and Spencer TJV. (1993). Transformation and regeneration of two cultivars of pea (Pisum sativum L.) Plant Physiology, 101, 751 -57.

Kar S, Johanson TM, Nayak P and Sen SK. (1996). Efficient transgenic plant regeneration through Agrobacterium-mediated transformation of chickpea. Plant Cell Reports, 16, 32 -37.

Downloads

Published

2018-10-30

How to Cite

Das, S. K., Hoque, M. I., & Sarker, . R. H. (2018). Study of different factors affecting Agrobacterium- mediated genetic transformation in lentil (Lens culinaris Medik.). GSC Biological and Pharmaceutical Sciences, 5(1), 034–042. https://doi.org/10.30574/gscbps.2018.5.1.0087

Issue

Section

Original Article