Synergistic larvicidal action of Citrus limon (L.) Osbeck (Rutaceae) and Bacillus thuringiensis Berliner 1915 (Bacillaceae) against the dengue vector Aedes aegypti Linnaeus 1762 (Diptera: Culicidae)

Authors

  • Grace Marin Department of Zoology, Scott Christian College, Nagercoil 629 003, Tamil Nadu, India.
  • Subramanian Arivoli Department of Zoology, Thiruvalluvar University, Vellore 632 115, Tamil Nadu, India.
  • Samuel Tennyson Department of Zoology, Madras Christian College, Chennai 600 059, Tamil Nadu, India

DOI:

https://doi.org/10.30574/gscbps.2020.10.1.0249

Keywords:

Citrus limon, Bacillus thuringiensis, Aedes aegypti, larvicidal, Synergistic action

Abstract

Botanical and microbial insecticides are promising alternatives to synthetic pesticides for mosquito control because of lower toxicity to non-target organisms and their innate biodegradation ability. The present study was aimed to determine the synergistic larvicidal action of Citrus limon and Bacillus thuringiensis on the dengue vector Aedes aegypti. The crude methanolic leaf extract of Citrus limon and Bacillus thuringiensis were tested separately on the third instar larvae of Aedes aegypti at concentrations of 100, 200, 300, 400 and 500 mg/L and at 0.5, 1.0, 1.5, 2.0 and 2.5 mg/L respectively. Larval mortality was observed after 24 and 48 hours and the corresponding LC50 values were 285.1 and 219.5 mg/L for Citrus limon and 1.9 and 1.4 mg/L for Bacillus thuringiensis respectively. The synergistic larvicidal action showed high mortality and its LC50 values were 158.5 and 109.9 mg/L after 24 and 48 hours of exposure respectively. This synergistic interaction was due to the phytocompounds of Citrus limon and toxins from Bacillus thuringiensis which showed toxicity on the larvae of the dengue vector, Aedes aegypti. Hence, the exploitation of plant chemicals and microbial pesticides can be suggested for use in mosquito vector control program for the control of mosquito-transmitted diseases.

Metrics

Metrics Loading ...

References

WHO. (2014). A global brief on vector-borne diseases [Document number: WHO/DCO/WHD/2014.1]. Geneva, Switzerland.

WHO. (2016). “Zika virus”, Fact sheet, World Health Organization.

Liu H, Xu Q, Zhang L and Liu N. (2005). Chlorpyrifos resistance in mosquito Culex quinquefasciatus. Journal of Medical Entomology, 42(5), 815-820.

Armadhani. (2014). Keefektifan Ekstrak Etanol Daun Petai Cina (Leucaena glauca, Benth) sebagai Larvasida Alami terhadap Kematian Larva Nyamuk Ae. aegypti instar III. Naskah Publikasi. Semarang: Universitas Negeri Semarang.

Musau JK, Mbaria JM, Nguta JM, Mathiu M and Kiama SG. (2016). Phytochemical composition and larvicidal properties of plants used for mosquito control in Kwale County, Kenya. International Journal of Mosquito Research, 3(3), 12-17.

Adnyani IGAP and Sudarmadja IM. (2016). Pengaruh Konsentrasi Ekstrak Etanol Daun Pepaya (Carica papaya L) terhadap Kematian Larva Nyamuk Aedes aegypti. E-Jurnal Medika, 5(8), 1-5.

Palanikumar M, Pravin Y, Navaneethan M, Mahendren S, Mohanraj RS and Dhanakkodi B. (2017). Callistemon citrinus (Myrtaceae) methanolic leaf extract: a potent mosquitocidal agent for controlling dengue vector mosquito Aedes aegypti (Diptera: Culicidae). Journal of Entomology and Zoology Studies, 5(3), 1051-1059.

Weisman Z and Chapagain B. (2003). Laboratory evaluation of natural saponin as a bioctive agent against Aedes aegypti and Culex pipiens. Dengue Bulletin, 27, 168-173.

Weisman Z and Chapagain B. (2006). Larvicidal activity of saponin containing extracts and fractions of fruit mesocarp of Balanites aegyptiaca. Fitoterapia, 77, 420-424.

Rawani A, Ray AS, Ghosh A, Sakar M and Chandra G. (2017). Larvicidal activity of phytosteroid compounds from leaf extract of Solanum nigrum against Culex vishnui group and Anopheles subpictus. BMC Research Notes, 10, 135-142.

Boudko DY, Moroz LL, Harvey WR and Linser PJ. (2001). Alkalinization by chloridebicarbonate pathway in larval mosquito midgut. Proceedings of the National Academy of Sciences of the United States of America, 26(98), 15355-15359.

Poopathi S and Abidha S. (2010). Mosquitocidal bacterial toxins (Bacillus sphaericus and Bacillus thuringiensis serovar israelensis): Mode of action, cytopathological effects and mechanism of resistance. Journal of Physiology and Pathophysiology, 1(3), 22-38.

Astarini NPF, Burhan RY and Zetra Y. (2009). Minyak atsiri dari kulit buah Citrus grandis, Citrus aurantium (L) dan Citrus aurantifolia (Rutaceae) sebagai senyawa antibakteri dan insektisida. Prosiding Kimia FMIPA-ITS, 8.

Din S, Akram W, Khan HAA, Hussain A and Hafeez F. (2011). Citrus waste derived essential oils: Alternative larvicides for dengue fever mosquito, Aedes albopictus (Skuse) (Culicidae: Diptera). Pakistan Journal of Zoology, 43, 367-372.

Akram W, Khan HAA, Hafeez F, Bilal H, Kim YK and Lee JJ. (2010). Potential of Citrus seed extracts against dengue fever mosquito, Aedes albopictus (Skuse) (Culicidae: Diptera). Pakistan Journal of Botany, 42, 3343-3348.

Mallick S, Adhikari U, Rawani A and Chandra G. (2016). Phytochemical analyses and larvicidal potentiality of fruit peel extracts of Citrus limetta against filarial vector Culex quinquefasciatus. Journal of Mosquito Research, 6, 1-7.

al Dakhil MA and Morsy TA. (1999). The larvicidal activity of the peel oils of three Citrus fruits against Culex pipiens. Journal of the Egyptian Society of Parasitology, 29(2), 347-352.

Balaraman K, Balasubramanian M and Jambulingam P. (1983). Field trial of Bacillus thuringiensis H-14 (VCRC B-17) against Culex and Anopheles larvae. Indian Journal of Medical Research, 77, 38-43.

Medeiros FP, Santos MA, Regis L, Rios EM and Neto RPJ. (2005). Development of a Bacillus sphaericus tablet formulation and its evaluation as a larvicide in the biological control of Culex quinquefasciatus. Memórias do Instituto Oswaldo Cruz, 100, 431-434.

Armengol G, Hernandez J, Velez JG and Orduz S. (2006). Longlasting effects of a Bacillus thuringiensis sero var israelensis experimental tablet formulation for Aedes aegypti (Diptera: Culicidae) control. Journal of Economic Entomology, 99, 1590-1595.

Khyami HH, Katbeh BA and Mohsen ZH. (1999). Isolation of endospore forming bacilli toxic to Culiseta longiareolata (Diptera: Culicidae) in Jordan. Letters in Applied Microbiology, 128, 57-60.

Darriet F and Hougard JM. (2002). An isolate of Bacillus circulans toxic to mosquito larvae. Journal of the American Mosquito Control Association, 18, 65-67.

Das K and Mukherjee AK. (2006). Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains. Acta Tropica, 97, 168-173.

Vogel. (1978). Textbook of practical organic chemistry, London, 1368.

Harborne JB. (1998). Phytochemical methods, a guide to modern techniques of plant analysis, 3rd Edition. Chapman and Hill Ltd., London, 279.

Van Burden TP and Robinson WC. (1981). Formation of complexes between protein and tannin acid. Journal of Agricultural Food Chemistry, 1, 77.

Obadoni BO and Ochuko PO. (2001). Studies and comparative efficacy of the crude extracts of some homostatic plants in Edo and Delta States of Nigeria. Global Journal of Pure and Applied Science, 8b, 203-208.

Boham A and Kocipai AC. (1974). Flavonoids and condensed tannins from leaves of Hawaiia vaccinum vaticulatum and V. calyscinium. Pacific Science, 48, 458-463.

Okwu DE and Okwu ME. (2004). Phytochemicals and vitamins content of indigenous plant species of south eastern Nigeria. Journal of Sustainable Agriculture and Environment, 6, 30-37.

W.H.O. (2005). Guidelines for laboratory and field testing of mosquito larvicides. WHO, Geneva.

Abbott WS. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.

SPSS. (2010). IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.

Hafeez F, Waseem A and Essam AS. (2011). Mosquito larvicidal activity of Citrus limonoids against Aedes albopictus. Parasitology Research, 109, 221-229.

Warikoo R, Ray A, Sandhu JK, Samal R, Wahab N and Kumar S. (2012). Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L. Asian Pacific Journal of Tropical Biomedicine, 2(2), 152-155.

Shrankhla and Kumar S. (2018). Larvicidal activities of petroleum ether extracts of different fruit peel wastes against an Indian strain of filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). European Journal of Biomedical and Pharmaceutical Sciences, 5(2), 1074-1078.

Supenah P, Taiman T and Sas OA. (2019). The effect of orange water of lemon (Citrus limon (L.) Osbeck) as a larvasid of Aedes Aegypti in third instar. Journal of Physics: Conference Series, 1360, 1-5.

Effiom OE. (2019). Evaluation of the kill times of minimum concentrations of extracts from Citrus fruit peels, pulp and seeds tested against mosquito larvae and pupae. International Journal of Innovative Science and Research Technology, 4(6), 341-346.

Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M, Koizumi M, Chihiro I and Furukawa H. (2000). Quantitative study of flavonoids in leaves of Citrus plants. Journal of Agricultural and Food Chemistry, 48, 3865-3871.

Mallick S, Mukherjee D, Ray AS and Chandra G. (2016). Larvicidal efficacy of fruit peel extracts of Citrus maxima against Culex quinquefasciatus. Journal of Mosquito Research, 6, 20.

Wati FA. (2016). The effectiveness of sweet orange juice against Aedes aegypti third instar. University of Sebelas Maret, Surakarta.

Fong CH, Hasegawa S, Herman Z and Ou P. (1990). Limonoid glucosides in commercial Citrus juices. Journal of Food Sciences, 54, 1505-1506.

Champagne DE, Koul O, Isman MB, Scudder GGE and Towers GHN. (1992). Biological activity of limonoids from the Rutales. Phytochemistry, 31, 377-394.

Jayaprakasha GK, Singh RP, Pereira J and Sakariah KK. (1997). Limonoids from Citrus reticulata and their moult inhibiting activity in mosquito Culex quinquefasciatus larvae. Phytochemistry, 44(5), 843-846.

Senthilkumar N, Varma P and Gurusubramanian G. (2009). Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston). Parasitology Research, 104, 237-244.

Prijadi DK and Wahongan GJP. (2016). The effectiveness of lime leaf extract in inhibiting the growth of larva of Aedes aegypti (Manado: Universitas Sam Ratulangi).

Rozendaal JA. (1999). La lutte antivectorielle: Méthodes à usage individuel et communautaire. OMS, Genève, 9-46.

Charles JF. (1987). Ultrastructural midgut events in Culicidae larvae fed with Bacillus sphaericus 2297 spordcrystal complex. Annales de l'Institut Pasteur. Microbiology, 138, 471-484.

Adang MJ. (1991). Bacillus thuringiensis insecticidal crystal proteins: gene structure, action and utilization. In Biotechnology for biological control of pest and vectors. K. Maramorosh (Ed.) (CRC Press, Boca Raton, 1991), 3-24.

Gill SS, Cowles EA and Pietranto PV. (1992). The mode of action of Bacillus thuringiensis endotoxins. Annual Review of Entomology, 37, 615-636.

Schwartz JL, Potvin L, Coux F, Charles JF, Berry C, Humphreys MJ, Jones AF, Bernhart I, Serra DM and Menestrina G. (2001). Permeabilization of model lipid membranes by Bacillus sphaericus mosquitocidal binary toxin and its individual components. Journal of Membrane Biology, 184, 171-183.

Baumann P, Clark MA, Bauman L and Broadwell AH. (1991). Bacillus sphaericus as a mosquito pathogen: Properties of the organism and its toxins. Microbiological Reviews, 55, 425-436.

Ludlum CT, Felton GW and Duffey SS. (1991). Plant defenses: Chlorogenic acid and polyphenol oxidase enhance toxicity of Bacillus thuringiensis subsp. kurstaki to Heliothis zea. Journal of Chemical Ecology, 17, 217-237.

Kumar KP, Murugan K, Kovendan K, Kumar AN, Hwang JS and Barnard DR. (2012). Combined effect of seaweed (Sargassum wightii) and Bacillus thuringiensis var. israelensis on the coastal mosquito, Anopheles sundaicus in Tamil Nadu, India. Science Asia, 38, 141-146.

Downloads

Published

2020-01-30

How to Cite

Marin, G., Arivoli , S., & Tennyson, . S. (2020). Synergistic larvicidal action of Citrus limon (L.) Osbeck (Rutaceae) and Bacillus thuringiensis Berliner 1915 (Bacillaceae) against the dengue vector Aedes aegypti Linnaeus 1762 (Diptera: Culicidae). GSC Biological and Pharmaceutical Sciences, 10(1), 025–033. https://doi.org/10.30574/gscbps.2020.10.1.0249

Issue

Section

Original Article