Assessment effects of post-harvest softening on the quality of safou (Dacryodes edulis) produced in Agboville (South-East, Côte d´Ivoire)
DOI:
https://doi.org/10.30574/gscbps.2020.11.2.0109Keywords:
Dacryodes edulis, Safou, Softening, Antinutritional and nutritional parameters, Post-harvestAbstract
The objective of this study was to assess the impact of post-harvest softening on parameters (nutritional and anti-nutritional) of saffron pulp (Dacryodes edulis). Thus, the safou fruits were picked at physiological maturity and stored at room temperature (27±1.2 °C) for 12 days during which five stages of softening (S0, S1, S2, S3 and S4) were defined. The softening index of D. edulis fruits varied from 0.86±0.06 mm to 3.53±0.03 mm (edulis) and from 0.85±0.05 mm to 2.86±0. 04 mm (parvicarpa). This study reveals that the softening index is significantly different (p <0.05) from one variety to another. The contents of total polyphenols decrease significantly during the post-harvest softening and vary from 13.54±0.2 mg/g to 2.54±0.13 mg/g (edulis), then from 13.31±0.3 mg/g at 2.41±0.1mg/g (parvicarpa). The flavonoid contents decrease from 0.71±0.02 mg/100 g to 0.15±0.02 mg/g (edulis) and from 0.69±0.03 mg/100g to 0.12±0.02 mg/100 g (parvicarpa). The tannin content decreases significantly during softening but there is no significant difference between two varieties of safou at each softening stage. The inhibitory concentration of safou increases significantly to the threshold of 5% during post-harvest softening from one variety to another and no significant difference is observed. Correlation test showed that the softening stage is significantly correlated (p <0.05) with the parameters studied. No significant variation in the content of total oxalates of safou is observed from one variety to another while the phytate contents decrease significantly and the values are respectively 1.46±0.03 mg/100g at 0.35±0.02 mg/100 g (edulis) and from 1.43±0.01 mg/100g to 0.31±0.01 mg/100g (parvicarpa). The post-harvest softening greatly reduced the anti-nutritional contents in the safou pulp and this led to a loss of its nutritional value.
Metrics
References
Kouamé NMT, Soro K, Mangara A, Diarrassouba N, Koulibaly AV and Boraud NKM. (2015).Etude physico-chimique de sept (7) plantes spontanées alimentaires du centre-ouest de la Côte d’Ivoire. Journal of Applied Biosciences, 90(1), 8450-8463.
Kadji BRL, Kone FMT, Sika AE and Dabonné S. (2016). Physico-chemical properties of Safou (Dacryodes edulis) fruits grown in Côte d’Ivoire. Journal of Applied Biosciences, 105, 10103-10110.
Ano AAR, Koffi NE, Adima AA, N’da PK and Anin LA. (2018). Composition biochimique et phytochimique des tourteaux des fruits du safoutier (Dacryodes edulis) de Côte d’Ivoire. International. Journal of Biological and Chemical Sciences, 12(6), 2535-2546.
Kadji. (2018). Etude des caractéristiques physicochimiques et du potentiel nutritionnel du safou [Dacryodes edulis (G. Don) H. J. Lam (Burseraceae)] cultivé en côte d’ivoire. Thèse de doctorat, Université Nangui Abrogoua, Côte d’ivoire, 164.
Noumi GB, Djounja T, Ngameni E and Kapseu C. (2014). Influence of the storage time on the fats and oil composition of safou (Dacryodes edulis) dried pulp. International Food Research Journal, 21(5), 1837-1841.
Kengué J. (2002). Fruits for the future 3- Safou- Dacryodes edulis. Research for Development in Department for International Development, 147.
Duru M, Amadi C, Ugbogu A, Eze A and Amadi B. (2012). Phytochemical, vitamin and proximate composition of Dacryodes edulis fruit at different stages of maturation. Asian Journal of Plant Science and Research, 2(4), 437-441.
Sika EA, Kadji LRB, Dje MK, Kone MTF, Dabonne S and Koffi-Nevry RA. (2019). Qualité nutritionnelle, microbiologique et organoleptique de farines composées à base de maïs (Zea mays) et de safou (Dacryodes edulis) produites en Côte d’Ivoire. Int. J. Biol. Chem. Sci, 13(1), 325-337.
Crepin EM, Sylvain G and Renard CMGC. (2004). Flavonols and Anthocyanins of Bush Butter, Dacryodes edulis (G. Don) H.J. Lam, Fruit. Changes in Their Composition during Ripening. Journal of Agricultural and Food Chemistry, 51(25), 7475-80.
Oboh G, Ademosun AO, Akinleye M, Omojokun OS, Boligon AA and Athayde ML. (2015). Starch composition, glycemic indices, phenolic constituents, and antioxidative and antidiabetic properties of some common tropical fruits. Journal of Ethnic Food, 2, 64-73.
Ononamadu CJ, Alhassan AJ, Aminu I, Abdullahi AI, Godwin OI, Owolarafe TA and Sule MS. (2019). Methanol-Extract/Fractions of Dacryodes edulis Leaves Ameliorate Hyperglycemia and Associated Oxidative Stress in Streptozotocin-Induced Diabetic Wistar Rats. Journal of Evidence-Based Integrative Medicine, 24, 1-12.
Moise MM, Benjamin LM and Etienne M. (2012). Intake of Gnetum
africanum and Dacryodes edulis, imbalance of oxidant/antioxidant status and prevalence of diabetic retinopathy in Central Africans. PLoS One, 7(12), 49411.
Ajibesin KK, Essien EE and Adesanya SA. (2011). Antibacterial constituents of the leaves of Dacryodes edulis, African Journal of Pharmacy and Pharmacology, 5(15), 1782-1786.
Dossou BR, Ella Missang C, Karou S and Ameyapoh Y. (2018). Relationship between texture and cell-wall components of safou (Dacryodes edulis (G. Don) H.J. Lam) fruits at different storage conditions. Journal of Applied Biosciences, 125, 12566-12580.
Dan CG. (2014). Evolution des paramètres biochimiques et physico fonctionnels des baies de Solanum anguivi Lam récoltées en Côte d’Ivoire au cours du mûrissement. Thèse de doctorat, Université Nangui Abrogoua, Côte d’Ivoire, 170.
Yao KJ-B, Atchibri O-AL, Koffi NE, N’da KP and Adima AA. (2016). “Optimisation of total flavonoids and total antioxidants extraction from Dacryodes edulis leaves”, International Journal of Current Research, 8(11), 42130-42135.
Ozdemir F and Topuz A. (2004). Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chemistry, 86, 79–83.
Talbi H, Boumaza A, El-mostafa K, Talbi J and Hilali A. (2015). Evaluation de l’activité antioxydante et la composition physico-chimique des extraits méthanolique et aqueux de la Nigella sativa L. Journal of Materials and Environmental Science, 6(4), 1111-1117.
Singleton VL, Orthofer R and Lamuela-Raventos RM. (1999). Analysis of total phenols and other oxydant substrates and antioxydants by means of Folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178.
Bainbridge Z, Tomlins K and Westby A. (1996). Analysis of condensed tannins using acidified vanillin. Journal of Food Science, 29, 77-79.
Meda A, Lamien CE, Romito M, Millogo J and Nacoulma OG. (2005). Determination of total phenolic, flavonoid and proline contents in Burkina Faso honeys as well as their radical scavenging activity. Food Chemistry, 91,571-577.
Oyaizu M. (1986). Studies on products of browning reaction- Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44, 307-315.
Sanchez-Moreno C, Larrauri JA and Saura-calixto F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal Science Technology International, 8,121-137.
Latta M and Eskin MJ. (1980). A Simple and rapid colorimetric method for Phytat determination. Journal of Agricultural and Food Chemistry, 28, 1313-1315.
Day RA and Underwood AL. (1986). Quantitative analysis. 5th ed. Prentice Hall, 701.
Huang Y, Renfu Lu, Yifei Xu and Kunjie C . (2018). Prediction of tomato firmness using spatially-resolved spectroscopy, in Postharvest Biology and Technology. Elsevier, 140, 18-26.
Silou T, Massamba D, Goma MJ, Maloumbi G and Biyoko S. (2007). Postharvest losses by natural softening of safou pulp (Dacryodes edulis) in Congo-Brazzaville. Journal of Food Ingineering, 79, 392-400.
Abu-Goukh AA and Bashir A. (2003). Changes in pectic enzymes and cellulase activity during guava fruit ripening. Food Chemistry, 83, 213-218.
Mamiro P, Fweja L, Chove B, Kinabo J, George V and Mtebe K. (2007). Physical and Chemical Mango (Mangifera Indica L.) Fruits varieties of Eastern Tanzania. Tanzania Journal of Biotechnology, 6(21), 2477-2483.
Dossou BR, Ella Missang C, Baron A, Renard CMGC and Silou T. (2012). Factors affecting postharvest preservation of safou (Dacryodes edulis (G. Don) H.J. Lam) fruits. Forests, Trees and Livelihoods, 21(1), 44-55.
Wei L, Yanxiang G, Jian Z and Qi W. (2007). Phenolic, Flavonoid, and Lutein Ester Content and Antioxidant Activity of 11 Cultivars of Chinese Marigold. Journal of Agriculture and Food Chemistry, 55, 8478–8484.
Cissé I. (2012). Caractérisation des propriétés biochimiques et nutritionnelles de la pulpe de baobab des espèces endémiques de Madagascar et d'Afrique continentale en vue de leur valorisation. Thèse de Doctorat Université de Montpellier, France 167.
Shwartz E, Glazer I, Irit B-Y, Matityahu I, Igal B-I, Holland D and Amir R. (2009). Changes in chemical constituents during the maturation and ripening of two commercially important pomegranate accessions. Food Chemistry, 115, 965–973.
Hodek P, Trefil P et Stiborova M. (2002). Flavonoids-potent and versatile biologically active compounds interacting with cytochromes. Chemico-Biological Interactions, 139, 1-21.
Fawole OA and Opara UL. (2013). Developmental Changes in Maturity Indices of Pomegranate Fruit: A Descriptive Review. Scientia Horticulturae , 159, 152-161.
Morry. (2007). Extraction de l’huile de safou assistée par les enzymes et caractéristiques chimiques de l’huile obtenue. Thèse de doctorat, Université des Sciences et Techniques de Masuku (USTM), Franceville Gabon 112.
Okudu HO, Okudu PC and Mene LP. (2017). Nutrients, phytochemicals and antioxidant properties of two varieties of tropical almond (Terminalia catappa) pulp. International Journal of Food And Nutrition Research, 1(6), 1-6.
Gil MI, Tomas-Barberan FA, Hess-Pierce B, Holcroft DM and Kader AA. (2000). Antioxidant Activity of Pomegranate Juice and its Relationship with Phenolic Composition and Processing. Journal of Agricultural and Food Chemistry, 48, 4581-4589.
Nour V, Trandafir I and Ionica ME. (2014). Evolution of antioxidant activity and bioactive compounds in tomato (Lycopersicon esculentum Mill.) fruits during growth and ripening. Journal of Applied Botany and Food Quality, 87, 97-103.
Fischer UA, Carle R and Kammerer DR. (2011). Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chemistry, 127, 807-821.
Akwaowo EU, Ndon BA and Etuk EU. (2000). Minerals and antinutrients in fluted pumpkin (Telfairia ccidentalis Hook f.), Food Chemistry, 70(2), 235–240.
Ghavidel R and Prakash J. (2007). The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavaibility and in vitro starch and protein digestibility of some legume seeds. LWT-Food Science and Technology, 40, 1292-1299.
Hurel D, Lefrant J Y, Cano NJ, Ichai C, Preiser J C and Tamion F. (2014). Nutrition artificielle en réanimation Guidelines for Nutrition Support in Critically Ill Patient. Réanimation, 23, 332-350.
Ibanga O and Okon D (2009). Minerals and anti-nutrients in two varieties of African pear (Dacryodes edulis). Journal of Food Technology, 7(4), 106-110.
Chavan JK and Kadam SS. (1989). Nutritional improvement of cereals by sprouting. Food Science and Nutrition, 28,401-37.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.