A review on SARS-CoV-2: the origin, taxonomy, transmission, diagnosis, clinical manifestations, treatment and prophylaxis

Authors

  • Zahir Abbas Hilmi Department of Biochemistry and Molecular Biology, Faculty of Science, University of Gezira, Wed Medani, Sudan.
  • Bandar H Aloufi University of Ha’il, Department of Biology, Faculty of Science, P. O. Box 2440, Hail, Kingdom Saudi Arabia.
  • Husam MA Ibrahim Department of Hematology, Faculty of Medical Laboratory Sciences, International University of Africa, Khartoum, Sudan.

DOI:

https://doi.org/10.30574/gscbps.2020.11.3.0156

Keywords:

Coronavirus, SARS-CoV-2, COVID-19, Spike S, ACE2, Horseshoe bat, rtPCR, transmission, fever, lungs micro clots, acute respiratory distress, plasma convalescent, Chloroquine.

Abstract

Coronavirus disease 19 (COVID-19) pandemic, caused by highly contagious SARS-CoV-2 that infects the respiratory system. COVID-19 started in Wuhan, south China, in December 2019, and spread to all other parts of the world. SARS-CoV-2 has +ssRNA genome (29,844bp) enclosed in an enveloped capsule (60 to 140 nm) and showing high genome homology (96%) with coronavirus of   its potential natural reservoir Horseshoe bats. Two types of SARS-CoV-2 were detected: type L (70%) and type S (30%). SARS-CoV-2 spikes have very high binding affinity with all cells expressing ACE2 receptor. Nasal swabs and bronchoalveolar lavage samples were used by reverse transcriptase rtPCR for detection of SARS-CoV-2. ELISA can detect anti-SARS-CoV-2 IgM and IgG antibodies five days post infection. COVID-19 infection is confirmed by clinical signs and symptoms and CT thoracic images. Patients typically present with fever (87.3%), cough (58.1%), dyspnea (38.3%), muscle soreness or fatigue (35.5%), chest distress (31.2%) and expectoration (29.4%). The fatality rate of the infection approaches 7%. Hundreds of lungs micro clots were reported to occur causing heart failure and death. Fatal consequences were reported in older patients and those with chronic diseases. There is no specific medicine, but supportive treatment and anticoagulants   are in use. Chloroquine and azithromycin have fatal consequences in 50% of patients, while Remdesivir did not show significant clinical or antiviral effects.  Plasma convalescence   clear the infection within three days. There is no vaccine for SARS-CoV-2 due to its mutations. Social isolation and countries lockdown measures exert catastrophic negative impact on health and economy worldwide.

Metrics

Metrics Loading ...

References

Drosten C, Günther G, Preiser W, Werf SVD, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RAN, Berger A, Burguière AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Müller, S, Rickerts V, Stürmer M, Vieth S, Klenk HD, Osterhaus ADME, Schmitz H and Doerr, HW. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med, 348, 1967–1976.

Kamps BS and Hoffmann C. (2003). SARS Reference. (3rded.) http://www.sarsreference.com/; SARS: How a global epidemic was stopped.

Y. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang, ZX, Cheung CL, Luo SL, Li PH, Zhang, LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen KY, Peiris JSM and Poon LLM. (2003). Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 302, 276–278.

Lai MMC and Holmes KC. (2001). Coronaviridae: the viruses and their replication. In Fields Virology, 4th edi. (Knipe DM, Howley PM, eds), Lippincott Williams and Wilkins, Philadelphia, 1163–1185.

Lai ST. (2005). Treatment of severe acute respiratory syndrome. Eur J Clin Microbiol Infect Dis, 24, 583–91.

Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME and Fouchier RAM. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 367, 1814–1820.

Lu R, Zhao, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhang F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, W G, Chen W, Shi W. and Tan W. (2020). Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395, 565-74.

Cann AJ. (2005). Principles of Molecular Virology. 5th edi. Elsevier Academic Press. ISBN : 0-12-088787-8.

WHO (2020). Mahase E. Covid-19: WHO declares pandemic because of "alarming levels" of spread, severity, and inaction. BMJ (Clinical research ed), 368, m1036.

McMichael TM, Currie DW, Clark S. Pogosjans S, Kay M, Schwartz NG, Lewis J, Baer A, Kawakami V, Lukoff MD, Ferro J, Smith CB, Rea TD, Sayre MR, Riedo FX, Russell D, Hiatt B, Montgomery P, Rao AK, Chow Ej, Tobolowsky F, Hughes MJ, Bardossy AC, Oakley LP, Jacobs JR, Stone ND, Reddy SC, Jeringan JA, Honein MA, Clark TA, and Duchin JS. (2020). Epidemiology of Covid-19 in a Long-Term Care Facility in King County, Washington. N EJM.J. Med. 1-7.

Mahy BWJ. (2001). Coronaviridae in: A Dictionary of Virology. 3rd Edition. Academic Press- Harcourt Publishers, 87—88.

Tang X, Wu CC, Li X, Song Y, Yao X, Wu X, Duan Y, Zhang H, Wang Y, Qian Z, Cui J, Lu J (2020). On the origin and continuing evolution of SARS-CoV-2, National Science Review, nwaa036.

Khailany RA, Safdar M. and Ozaslan M. (2020). Genomic characterization of a novel SARS-CoV-2. Gene Reports, 19, 10068.

Lim YX, Ng YL, Tam JP, Liu DX. (2016). Human Coronaviruses: A Review of Virus–Host Interactions. Diseases, 4, 26.

Nakagawa K, Lokugamage, KG and Makino S. (2016). In Advances in Virus Research (ed John Ziebuhr). 96, 165–192 Academic Press.

Ashikujaman S. (2020). Coronavirus: A Mini-Review. Int J Curr Res Med Sci, 6(1), 8-10.

Li F. (2016). Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol, 3, 237-261.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Lou Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, She LZ. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270—290.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF. and Tan W. (2020). "A Novel Coronavirus from Patients with Pneumonia in China, 2019". N ENG J Med, 382 (8), 727–733.

Chen Y, Liu Q. and Guo D.(2020). Emerging Coronaviruses: genome structure, replication, and pathogenesis. Journal of Medical Virology, 92 (4), 418-423.

Chen, L, Liu W, Zhang Q,, Xu K, Ye W, Sun Z, Liu F, Wu K, Zhong B, Mei Y, Zhang W, Chen Y, Li Y, Shi MLan K and Liu Y.(2020). RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg Microbes Infect, 9, 313-9. .

Valencia DN. (2020). Brief Review on COVID-19: The 2020 Pandemic Caused by SARS-CoV-2. Cureus, 12(3), e7386.

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 5(4), 536‐544.

Gorbalenya, AE, Baker SC, Baric R, Groot RJde, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, Poon L, Samborskiy D, Sidorov IA and Ziebuhr J. (2020). Severe acute respiratory syndrome-related coronavirus—The species and its viruses, a statement of the Coronavirus Study Group.

Andersen KG, Rambaut A, Lipkin WI, Holmes EC and Garry RF.(2020). The proximal origin of SARS-CoV- 2. Nat Med 26, 450–452 (2020).

Xu X, Chen P, Wang J, Feng J, Zhou H, Li X. and Zhong W. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 63(3) 457-460.

Yin C. (2020). Genotyping coronavirus SARS-CoV-2: methods and implications. arXiv:2003.10965[q-bio.GN].

Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu ZZ, Zhang H, Wang JY, Quan L, Xia Z, Tan W, Cheng G. and Jiang T.(2020). Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe.

Wu Z and McGoogan JM. (2020). Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA. 323(13), 1239-1242.

Paraskevis D, Kostaki G, G.Panayiotakopoulos M, Sourvinos G and Tsiodras S. (2020). Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution, 104212 pathogenesis. J Med Virol, 92, 418–423.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, and Zhan F. (2020). A Novel Coronavirus from patients with Pneumonia in China, 2019, N Engl J Med; 382:727-733.

Zhang T, Wu Q. and Zhang Z. (2020). Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Current Biology, 30, 1346–1351.

Forni D, Cagliani R, Clerici M and Sironi M. (2017). Molecular Evolution of Human Coronavirus Genomes. Trends in microbiology.1(25) 35-48.

Brian DA and Baric RS. (2005). Coronavirus Genome Structure and Replication. In: Enjuanes L. (eds) Coronavirus Replication and Reverse Genetics. Current Topics in Microbiology and Immunology, (287) 1--30. Springer, Berlin, Heidelberg.

Zheng J. (2020). SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. Int J Biol Sci, 16(10), 1678-1685.

Liu L, Wei Q, Alvarez X, Wang H, Du Y, Zhu H, Jiang H, Zhou J, Lam P, Zhang L, Lackner A, Qin C. and Chen Z. (2011). Epithelial cells lining salivary gland ducts are early target cells of severe acute respiratory syndrome coronavirus infection in the upper respiratory tracts of rhesus macaques. J. Virol, 85, 4025–4030.

Li S, Yuan L, Dai G, Chen RA, Liu DX and Fung TS. (2020). Regulation of the ER Stress Response by the Ion Channel Activity of the Infectious Bronchitis Coronavirus Envelope Protein Modulates Virion Release, Apoptosis, Viral Fitness, and Pathogenesis. Front. Microbiol.

To KKW, Tsang OTY, Yip CCY, Chan KH, Wu TC, Chan JMC, Leung WS, Chik TSH, , Choi CYC, Kandamby DH, Lung DC, Tam AR, Poon RSH, Fung AYF, Hung IFN, Chung VC, Chan JFW. And Yuen KY. (2020). Consistent Detection of 2019 Novel Coronavirus in Saliva, Clinical Infectious Diseases, ciaa149.

Dong N, Yang X, Ye L, Chen K, Chan EWC, Yang M. and Chen S. (2020). Genomic and protein structure modeling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China.bioRxiv preprint.

Wu F, Zhao S, Yu B, Chen, YN, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC. and Zhang YZ. (2020). A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269.

Xie M and Chen Q. (2020). Insight into 2019 novel coronavirus — an updated intrim review and lessons from SARS-CoV and MERS-CoV. International Journal of Infectious Diseases . Journal pre-Proof.

Srinivasan S, Cui H, Gao Z, Liu M, Lu S, Mkandawire W, Narvkov O, Sun M. and Korkin D. (2020). Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. Viruses, 12(360), 1—18.

Firas A. Rabi FA, Al Zoubi MS, Kasasbeh GA, D Salameh, DM, and Al-Nasser AD. (2020). SARS-CoV-2 and Coronavirus Disease 2019: What we know so far. Pathogens, 9(231), 1—14.

Zou X , Chen K, Zou J, Han P, Hao J and Han Z. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med,14(2): 185–192.

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Chen X, Chen J, Hu K, Jin Q, Wang J. and Qian Z. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11, 1620.

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hseih CL, Abiona O, Graham BS. And McLellan JS. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation". Science, 367(6483), 1260– 1263.

Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y. and Wang X. (2017). Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res, 27, 119–129.

Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M. and Pascarella S. (2020). Sars-CoV-2 Envelope and Membrane Proteins: Structural Differences Linked to Virus Characteristics?

Hoffmann M, Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler, G, Wu NH, Nitsche A, Muller MA, Drostein C. and Pohlman S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell 181, 1-10.

Riordan JF. (2003). Angiotensin-I-converting enzyme and its relatives. Genome Bio, 4, 225.

Caldeira D, Alarcão J, Vaz-Carneiro A, João Costa J. (2012). Risk of pneumonia associated with use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers: systematic review and meta-analysis. BMJ. 345(111), e4260.

Walls C, Park YJ, Tortorici A, Wall A, McGuire AT. and Veesler D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell , 2(181), 281-292.

Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang J, McEachem J, Field H, Daszak P, Eaton BT, Zhang S. and Wang L F. (2005). Bats Are Natural Reservoirs of SARS-Like Coronaviruses. Science, 310 (5748), 676-679.

Wang LF, Shi Z, Zhang S, Field H, Daszak P. and Eaton BT. (2006). Review of Bats and SARS". Emerging Infectious Diseases, 12 (12), 1834—1840.

Ge, XY, Li J, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Dazak P. and Shi ZL. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503, 535–538.

Cyranoski D. (2020). Did pangolins spread the China coronavirus to people? Nature.

Wahba L, Jain N, Fire AZ, Shoura MJ, Artiles, KL, McCoy MJ. and Jeong DE. (2020). Identification of a pangolin niche for a 2019-nCoV-like coronavirus through an extensive meta-metagenomic search. BioRexiv.

Cheng MP, Papenburg, J, Desjardins M, Kanjilal S, Quach C,Libman M. and Yansouni CP. (2020). Diagnostic Testing for Severe Acute Respiratory Syndrome–Related Coronavirus 2. Annals of internal Medicine.

Xiaoshuai R, Liu Y, Chen H, Liu W, Guo Z, Zhang Y, Chen C, Zhou J, Xiao Q, Jiang, GM and Shan H. (2020). Application and Optimization of RT-PCR in Diagnosis of SARS-CoV-2 Infection. .

Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, Bleicker T, Brünink S, , Schneider J, Schmidt ML, Mulders DGJC, Haagmans BL, Veer BVD, Brink SVD, Wijsman L, Goderski G, Romette JL, Ellis J, Zambon M, Peiris M, Goossens H, Reusken C, Koopmans MPG, and Drosten C. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill , 25(3), 2000045.

Tahamtan A and Ardebili A. (2020). Real-time RT-PCR in COVID-19 detection: issues affecting the results, Expert Review of Molecular Diagnostics, 20:5, 453-454.

Xiao SY, Wu Y and Liu H. (2020). Evolving status of the 2019 novel coronavirus infection: Proposal of conventional serologic assays for disease diagnosis and infection monitoring. Journal of Medical Virology, 92(5), 464-7.

Green K, Graziadio S, Turner P, Fanshawe T and Allen J. (2020). Molecular and antibody point-of-care tests to support the screening, diagnosis and monitoring of COVID-19. Oxford COVID-19 Evidence Service- CEBM. http://www.cebm.net/oxford-covid-19-evidence-service/

Chan JFW, Kok KH, Zhu Z, Chu H, To KKW, Yuan S. Yuen KY. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect, 9, 221-36.

Chan JFW, Yuan S, Kin-Hang Kok KH, To KKW, Hin Chu H, Yang J, Xing F, Nurs JLB, Yip CCY, Poon RWS, Tsoi HW, Lo SKF, M Phil , Chan KH, Poon VKM, Chan WM, DanielIp J, Cai JP, Cheng VCC, Yuen KY. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet, 395, (10223), 469-470.

Fauci AS, Lane HC. And Redfield RR. (2020). COVID-19—Navigating the Uncharted . N Engl J Med, 382(13), 1268-1269.

Cleveland JL, Gray SK, Harte JA, Robison VA, Moorman AC, Goch BF. (2016). Transmission of blood-borne pathogens in US dental health care settings. J. Am. Dent. Assoc, 147(1939), 729–738.

Peng X, Xu X, Li Y, Cheng L, Zhou X. and Ren B. (2020). Transmission routes of 2019-nCoV and controls in dental practice. International Journal of Oral Science,12, 9.

Fauci AS, Lane HC and Redfield RR. (2020). (2020). COVID-19—Navigating the Uncharted .New England Journal of Medicine, 13(382), 1268-69.

Wei J and Li Y. (2016). Airborne spread of infectious agents in the indoor environment. Am J Infect Control, 44, S102–S108.

Guy JL, Lambert DW, Warner FJ, Hooper NM. And Turner AG. (2005). Membrane associated zinc peptidase families: comparing ACE and ACE2. Biochim. Biophysi. Acta, (BBA) - Proteins and Proteomics, 1751, 2–8.

Zhao X, Zhang B, Li P, Ma C, Gu J, Hou P, Guo Z, Hong WU, Bai Y.(2020). Incidence, clinical characteristics and prognostic factors of patients with COVID-19: A systematic review and meta analysis. medRxiv.

Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov.

Huang C, Wang Y, Li X, Ren L, Zhao J , Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Cao B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395, (10223), 497-506.

Yan CH, Fararii F, Prajapati DP, Boone CE and DeConde A. (2020). Association of chemosensory dysfunction and COVID‐19 in patients presenting with influenza‐like symptoms. Wiley online library.

Cao Y, Liu X, Xiong L and Cai K. (2020). Imaging and clinical features of patients with 2019 novel coronavirus SARS‐CoV‐2: A systematic review and meta‐analysis. J Med Virol.

Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Napoli RD. (2020). Features, Evaluation and Treatment Coronavirus (COVID-19) [Updated 2020 Apr 6]. In: StatPearls [Internet]. Treasure Island (FL). StatPearls Publishing.

Bonow RO, Fonarow GC, O’Gara PT, Yancy CW. (2020). Association of Coronavirus disease (COVID-19) with myocardial injury and mortality. JAMA Cardiology (On line).

Klok FA, Kruip M, van Deer Meer NJM, Arbous MS, Gommers, DAM, Kant KM, Kapt FHJ, Passen JV, Stals MAM, Huisman MV. And Eneman H. (2020). Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Reseasrch, 191, 145—147.

Liu W and Li H. (2020). COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. ChemRxiv.

DeClercq E. (2014). Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Review of Anti-infective Therapy, 4(2) 291-302.

Keyaerts E, Li S,Vijgen L,Rysman E,Verbeeck J,Van Ranst M. And Maes P. (2009). Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrobial Agents Chemotherapy, 53(8), 3416–21.

Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Zhao L, Dong E, Song C, Zhan S, Lu R, Li H and Tan D. (2020). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020 March. ciaa237.

Gautret P, ChristopheLagier J, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Dupont HT, Honoré S, Colson P, Chabrière E , Scola B, Rolain JM, Brouqui P, and Raoult D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 105949.

Gbinigie K and Frie K. (2020). Should chloroquence and hydroxychloroquine be used to treat COVID-19? A rapid review. BJGP Open: bjgpopen20X101069.

Wang, M., Cao, R., Zhang, L. Yang X, Liu J, Xu M Shi Z, Hu Z, Zhong W. and Xiao G. (2020). Remdesivir and Chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 30, 269–271.

Chatre, C., Roubille, F., Vernhet, H. Jorgensen C. and Pers YM. (2018). Cardiac Complications Attributed to Chloroquine and Hydroxychloroquine: A Systematic Review of the Literature. Drug Saf, 41, 919–31.

Moore N. (2020). Chloroquine for COVID-19 Infection. Drug Safety, 43, 393–394.

Wang Y, Zhang, D, Du G, Du R, Zhao J, Ji Y, Fu S, Gao L, Cheng Z, Lu K, Hu Y, Luo G, Wang K, Lu Y, Li H, Wang S, Ruan S, Li H, Yan C. wang C. (2020 ). Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 395, 1569–78.

Soo YO, Cheng Y, Wong R, Hui DS, Lee CK, Tsang KKS, Ng MHL, Chan P, Cheng G, Sung JJY. (2004). Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect, 10, 676–78.

Cheng Y, Wong R, Soo YOY, wong WS, Lee CK, Ng MHL, Chan P, Wong KC, Leung CB. And Cheng G. (2005). Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis, 24, 44–46.

WHO. (2014). Use of convalescent whole blood or plasma collected from patients recovered from Ebola virus disease for transfusion, as an empirica treatment during outbreaks. . https://apps.who.int/iris/bitstream/handle/10665/135591/WHO_HIS_SDS_2014.8_eng.pdf

Arabi Y, Balkhy H, Hajeer AH, Bouchama A, Hayden FG, Al-Omari A, Al-Hameed FM, Taha Y, Shindo N, Whitehead J, Merson L, AlJohani S, Al-Khairy K, Carson G, Luke TC, Hensley L, Al-Dawood A, Al-Qahtani S, Modjarrad K, Sadat M, Rohde G, Catherine Leport C and Fowler R. (2015). Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springer plus, 4, 709.

Hung IF, To KKW, Lee CK, Lee KL, Chan K, Yan WW, Liu R, Watt CL, Chan WM, Lai KY, Buckley T, Chow FL, Wong KK, Chan HS, Ching CK, Tang BSF, Lau CCY, Li ISW, Liu SH, Chan KH, Lin CK, Yuen KY. (2011). Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Di. 52, 447–56.

Hung IFN, To KKW, Lee CK, Lee KL, Yan WW, Chan K, Chan WM, Ngai CW, Law KI, Chow FL, Liu R, Lai KY, Lau CCY, Liu SH, Chan KH, Lin CK. and Yuen KY. (2013). Hyper immune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A (H1N1) infection. Chest, 144, 464–73.

Chen L, Xiong J, Bao L, She Y. (2020). Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 20 (4). 398 – 400.

Duan K, Liu B, Li C, Zhang H, Tu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z, Zhang X. and Yang X. (2020). Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A, 117, (17) 9490-9496.

Nguyen TM, Zhang Y. and Pandolfi PP. (2020). Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res. 30, 189–190.

Downloads

Published

2020-06-30

How to Cite

Hilmi, . Z. A., Aloufi , B. H., & Ibrahim , H. M. (2020). A review on SARS-CoV-2: the origin, taxonomy, transmission, diagnosis, clinical manifestations, treatment and prophylaxis. GSC Biological and Pharmaceutical Sciences, 11(3), 052–066. https://doi.org/10.30574/gscbps.2020.11.3.0156

Issue

Section

Review Article