Dendritic cells vaccines: Immunotherapy against cancer

Authors

  • Salas Fernanda Rojas Pharmacy School, University of Costa Rica, San José, Costa Rica.
  • Mora Josué Solano Pharmacy School, University of Costa Rica, San José, Costa Rica.
  • Méndez Sofía Staikidis Pharmacy School, University of Costa Rica, San José, Costa Rica.
  • Molina José Pablo Rojas Pharmacy School, University of Costa Rica, San José, Costa Rica.
  • Leung Wilson Fung Pharmacy School, University of Costa Rica, San José, Costa Rica.
  • Ramírez José Manuel Fallas Institute of Pharmaceutical Research (INIFAR), San José, Costa Rica.
  • Redondo German Madrigal Institute of Pharmaceutical Research (INIFAR), San José, Costa Rica.

DOI:

https://doi.org/10.30574/gscbps.2020.12.1.0199

Keywords:

Dendritic cell, Cancer, Vaccine, Immune, Tumor

Abstract

Dendritic cells are specialized cells of the innate immune system, with high capacity to present antigens in the context of the Major Histocompatibility Complex II (MHC-II) to T lymphocytes (CD4+); these cells are up to 100 times stronger than any other antigen presenting cell. The ability of the antigen presentation by dendritic cells has been documented in animal models and clinical studies conducted in humans. Based on the above, different techniques and methods have been developed to use dendritic cells in cancer-aimed immunotherapies. The dendritic cell vaccines refer to biological therapies, prepared by different strategies (ex vivo and in vivo), which aim to enhance the presentation of tumor antigens and develop a more targeted and sustained immune response on these. They are obtained from precursor cells that mature with specific stimuli that direct them to the desired therapy. Different applications for these therapies have been described in numerous types of cancers, which will be described.

Metrics

Metrics Loading ...

References

Muñoz MA, García MD and Reguera RM. (2017). Nanotecnología. Nanomedicina e Infección por el Virus de la Inmunodeficiencia Humana. Nanotecnología y células dendríticas en el desarrollo de una vacuna terapéutica frente al VIH, First edition. Programa Iberoaméricano de Ciencia y Tecnología para el Desarrollo, Madrid, 46.

Sureda M, Vázquez MB and Rebollo J. (2012). Células dendríticas II: utilización clínica en vacunación antitumoral. Inmunología, 31(2), 43–48.

Lozada I, Núñez C and Aguilar JL. (2015). Inmunoterapia en melanoma: vacunas de células dendríticas. Revista Peruana de Medicina Experimental y Salud Pública, 32 (2), 555.

Pyzer AR, Avigan DE and Rosenblatt J. (2014). Clinical trials of dendritic cell-based cancer vaccines in hematologic malignancies. Human Vaccines Immunotherapy, 10(11), 3125–3131.

Galati D and Zanotta S. (2017). Hematologic neoplasms: Dendritic cells vaccines in motion. Clinical Immunology, 183, 181–190.

Alfaro C, Oñate C, Rodríguez A, Pérez JL, Fernández M and Melero I. (2013). Células dendríticas especializadas en presentación de antígenos exógenos a linfocitos T citotóxicos. Anales del Sistema Sanitario de Navarra, 36(3), 519–537.

Bol KF, Schreibelt G, Gerritsen WR, de Vries IJM and Figdor CG. (2016). Dendritic Cell-Based Immunotherapy: State of the Art and Beyond, Clinical Cancer Research, 22(8), 1897–1906.

Constantino J, Gomes C, Falcão A, Neves BM and Cruz MT. (2017). Dendritic cell-based immunotherapy: a basic review and recent advances. Immunology Research, 65(4), 798–810.

Vázquez MB, Sureda M and Rebollo J. (2012). Células dendríticas I: aspectos básicos de su biología y funciones. Inmunología, 31(1), 21–30.

Rizzo M, Alaniz L and Mazzolini G. (2016). Vacunas Terapéuticas Antitumorales basadas en Células Dendríticas. Medicina Buenos Aires, 76(16), 307–314.

Romero F, Sánchez P, Risalde MA, Pedrera M, Molina V, Ruiz E and Gómez JC. (2011). Funciones y clasificación de las células dendríticas. Anales de la Real Academia de Ciencias Veterinarias de Andalucía Oriental, 24(1), 168–185.

Cintolo JA, Datta J, Mathew S and Czerniecki BJ. (2012).Dendritic cell-based vaccines: barriers and opportunities. Future Oncology, 8(10), 1273–1299.

Sabado RL, Balan S and Bhardwaj N. (2017). Dendritic cell-based immunotherapy, Cell Research, 27(1), 74–95.

Donnelly RF. (2017). Vaccine delivery systems. Human Vaccines Immunotherapy, 13(1), 17–18.

López M, Mallorquín P, Pardo R and Vega M. (2004). Vacunas de nueva generación: informe de vigilancia tecnológica. Genoma España, Madrid, 52-56.

Baxter D. (2007). Active and passive immunity, vaccine types, excipients and licensing. Occupational Medicine, 57(8), 552–556.

Seager J, Lutz M, Hama S, Cruz D, Castrillo A, Lazaro J, Phillips R, Premack B and Berliner J. (2004). Method for large scale isolation, culture and cryopreservation of human monocytes suitable for chemotaxis, cellular adhesion assays, macrophage and dendritic cell differentiation. Journal of Immunological Methods, 288(1) 123–134.

Howard CJ and Hope JC. (2000). Dendritic cells, implications on function from studies of the afferent lymph veiled cell. Veterinary Immunology and Immunopathology, 77(1), 1–13.

Yamanaka R and Kajiwara K. (2012). Dendritic Cell Vaccines. Glioma: Advances in Experimental Medicine and Biology. Springer, New York, 187–200.

Filley AC and Dey M. (2017). Dendritic cell based vaccination strategy: an evolving paradigm, Journal of Neuro-Oncology, 133(2), 223–235.

Wculek SK, Amores J, Conde R, Khouili SC, Melero I and Sancho D. (2019). Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen, Journal for Immunotherapy of Cancer, 7(1), 100.

Gato M, Liechtenstein T, Blanco I, Zudaire MI, Kochan G and Escors D. (2015). Inmunoterapia genética con células dendríticas para el tratamiento del cáncer. Anales del Sistema Sanitario de Navarra, 38 (2), 279–287.

Fecci PE, Heimberger AB and Sampson JH. (2014). Immunotherapy for Primary Brain Tumors: No Longer a Matter of Privilege. Clinical Cancer Research, 20(22), 5620–5629.

Pu X, Wu L, Su D, Mao W and Fang B. (2018). Immunotherapy for non-small cell lung cancers: biomarkers for predicting responses and strategies to overcome resistance, BMC Cancer, 18(1), 1082.

Palucka K and Banchereau J. (2013). Dendritic-Cell-Based Therapeutic Cancer Vaccines. Immunity, 39(1), 38–48.

Haicheur N, Bismuth E, Bosset S, Adotevi O, Warnier G, Lacabanne V, Regnault A, Desaymard C, Amigorena S, Ricciardi P, Goud B, Fridman WH, Johannes L and Tartour E. (2000). The B Subunit of Shiga Toxin Fused to a Tumor Antigen Elicits CTL and Targets Dendritic Cells to Allow MHC Class I-Restricted Presentation of Peptides Derived from Exogenous Antigens. The Journal of Immunology, 165(6), 3301–3308.

Mody N, Dubey S, Sharma R, Agrawal U and Vyas SP. (2015). Dendritic cell-based vaccine research against cancer. Expert Review of Clinical Immunology, 11(2), 213–232.

Pinzon A, Maxwell T and López JA. (2005).Dendritic cell dysfunction in cancer: A mechanism for immunosuppression. Immunology and Cell Biology, 83(5), 451–461.

Thordardottir S, Schaap N, Louer E, Kester MGD, Falkenburg JHF, Jansen J, Radstake TRD, Hobo W and Dolstra H. (2017). Hematopoietic stem cell-derived myeloid and plasmacytoid DC-based vaccines are highly potent inducers of tumor-reactive T cell and NK cell responses ex vivo. OncoImmunology, 6(3), e1285991.

Zeng J, Wu C and Wang S. (2015). Antigenically Modified Human Pluripotent Stem Cells Generate Antigen-Presenting Dendritic Cells. Scientific Reports, 5(1), 15262.

Kinnebrew MA, Buffie CG, Diehl GE, Zenewicz LA, Leiner I, Hohl TM, Flavell RA, Littman DR and Pamer EG. (2012). Interleukin 23 Production by Intestinal CD103+CD11b+ Dendritic Cells in Response to Bacterial Flagellin Enhances Mucosal Innate Immune Defense. Immunity, 36(2), 276–287.

Dougan M, Dranoff G and Dougan SK. (2019). Cancer Immunotherapy: Beyond Checkpoint Blockade. Annual Review of Cancer Biology, 3(1), 55–75.

Bonifaz LC, Ponnyay DP, Charalambous A, Darguste DI, Fujii SI, Soares H, Brimnes MK, Moltedo B, Moran TM and Steinman RM. (2004). In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. The Journal of Experimental Medicine, 199(6), 815–824.

Tacken PJ and Figdor CG. (2011). Targeted antigen delivery and activation of dendritic cells in vivo: Steps towards cost effective vaccines. Seminars in Immunology, 23(1), 12–20.

Soares H, Waechter H, Glaichenhaus N, Mougneau E, Yagita H, Mizenina O, Dudziak D, Nussenzweig MC and Steinman RM. (2007). A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12–independent but CD70-dependent mechanism in vivo. Journal of Experimental Medicine, 204(5), 1095–1106.

Sonpavde G, McMannis JD, Bai Y, Seethammagari MR, Bull JMC, Hawkins V, Dancsak TK, Lapteva N, Levitt JM, Moseley A, Spencer DM and Slawin KM. (2017). Phase I trial of antigen-targeted autologous dendritic cell-based vaccine with in vivo activation of inducible CD40 for advanced prostate cancer. Cancer Immunology, Immunotherapy, 66(10), 1345–1357.

Zhai J, Gao W, Zhao L, Gao Z, Jiang X and Lu C. (2018). Dendritic cell vaccine with Ag85A enhances anti‑colorectal carcinoma immunity. Experimental and Therapeutic Medicine, 16, 5123-5129.

Thurner B, Haendle I, Röder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Bröcker EB, Steinman RM, Enk A, Kämpgen E and Schuler G. (1999). Vaccination with Mage-3a1 Peptide–Pulsed Mature, Monocyte-Derived Dendritic Cells Expands Specific Cytotoxic T Cells and Induces Regression of Some Metastases in Advanced Stage IV Melanoma. The Journal of Experimental Medicine, 190(11), 1669–1678.

Gaugler B, Van den Eynde B, van der Bruggen P, Romero P, Gaforio JJ, De Plaen E, Lethé B, Brasseur F and Boon T. (1994). Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. The Journal of Experimental Medicine, 179(3), 921–930.

Yang DH, Kim MH, Lee YK, Hong CY, Lee HJ, Nguyen TN, Bae SY, Ahn JS, Kim YK, Chung IJ, Kim HJ, Kalinski P and Lee JJ. (2011). Successful cross-presentation of allogeneic myeloma cells by autologous alpha-type 1-polarized dendritic cells as an effective tumor antigen in myeloma patients with matched monoclonal immunoglobulins. Annals of Hematology, 90(12), 1419–1426.

Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox K, Zhang P, Koski G and Czerniecki BJ. (2012). HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ: DC Vaccine Eliminates HER-2 Expression. Cancer, 118(17), 4354–4362.

Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R, Nisenbaum H, Pasha T, Xu M, Fox KR, Weinstein S, Orel SG, Vonderheide R, Coukos G, DeMichele A, Araujo L, Spitz FR, Rosen M, Levine BL, June C and Zhang PJ. (2007). Targeting HER-2/neu in Early Breast Cancer Development Using Dendritic Cells with Staged Interleukin-12 Burst Secretion. Cancer Research, 67(4), 1842–1852.

Zhang L, Yang X, Sun Z, Li J, Zhu H, Li J and Pang Y. (2016). Dendritic cell vaccine and cytokine-induced killer cell therapy for the treatment of advanced non-small cell lung cancer, Oncology Letters, 11(4), 2605–2610.

Perroud MW, Honma HN, Barbeiro AS, Gilli SC, Almeida MT, Vassallo J, Saad ST and Zambon L. (2011). Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study. Journal of Experimental & Clinical Cancer Research, 30(1), 65.

Takahashi H, Shimodaira S, Ogasawara M, Ota S, Kobayashi M, Abe H, Morita Y, Nagai K, Tsujitani S, Okamoto M, Suzuki Y, Nakanishi Y and Yonemitsu Y. (2016). Lung adenocarcinoma may be a more susceptive subtype to a dendritic cell-based cancer vaccine than other subtypes of non-small cell lung cancers: a multicenter retrospective analysis. Cancer Immunology, Immunotherapy, 65(9), 1099–1111.

Nava S, Dossena M, Pogliani S, Pellegatta S, Antozzi C, Baggi F, Gellera C, Pollo B, Parati EA, Finocchiaro G and Frigerio S. (2012). An Optimized Method for Manufacturing a Clinical Scale Dendritic Cell-Based Vaccine for the Treatment of Glioblastoma. PLoS ONE, 7(12), e52301.

Reardon DA and Mitchell DA. (2017). The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Seminars in Immunopathology, 39(2), 225–239.

Batchu RB, Gruzdyn OV, Qazi AM, Mahmud EM, Mostafa G, Weaver DW and Gruber SA. (2016). Pancreatic Cancer Cell Lysis by Cell-Penetrating Peptide-MAGE-A3–Induced Cytotoxic T Lymphocytes. JAMA Surgery, 151(11), 1086.

Katsuda M, Miyazawa M, Ojima T, Katanuma A, Hakamada K, Sudo K, Asahara S, Endo I, Ueno M, Hara K, Yamada S, Fujii T, Satoi S, Ioka T, Ohira M, Akahori T, Kitano M, Nagano H, Furukawa M, Adachi T and Yamaue H. (2019). A double-blind randomized comparative clinical trial to evaluate the safety and efficacy of dendritic cell vaccine loaded with WT1 peptides (TLP0-001) in combination with S-1 in patients with advanced pancreatic cancer refractory to standard chemotherapy. Trials, 20(1), 242.

Kandalaft LE, Chiang CL, Tanyi J, Motz G, Balint K, Mick R and Coukos G. (2013). A Phase I vaccine trial using dendritic cells pulsed with autologous oxidized lysate for recurrent ovarian cancer. Journal of Translational Medicine, 11(1), 149.

Downloads

Published

2020-07-30

How to Cite

Rojas , S. F., Solano, . M. J., Staikidis , M. S., Rojas , M. J. P., Fung , L. W., Fallas , R. J. M., & Madrigal , R. G. (2020). Dendritic cells vaccines: Immunotherapy against cancer. GSC Biological and Pharmaceutical Sciences, 12(1), 205–215. https://doi.org/10.30574/gscbps.2020.12.1.0199

Issue

Section

Review Article