Growth parameters, mineral distribution, chlorophyll content, biochemical constituents and non-enzymatic antioxidant compounds of white yam (Dioscorea rotundata (L) var. gana) grown under salinity stress.

Authors

  • Ndouma Mbondjo Cécile Department of Botany, Faculty of Science, The University of Douala, P.O. Box 24157, Douala-Cameroon.
  • Nouck Alphonse Ervé Department of Biological Sciences, Faculty of Sciences, The University of Bamenda, P.O. Box 39 Bambili-Cameroon.
  • Titah Margaret Awah Department of Biology, Higher Teacher Training College, The University of Bamenda, P.O. Box 39 Bambili-Cameroon.
  • Ndjouondo Gildas Parfait Department of Biology, Higher Teacher Training College, The University of Bamenda, P.O. Box 39 Bambili-Cameroon.
  • Ekwel Sondi Serge Department of Botany, Faculty of Science, The University of Douala, P.O. Box 24157, Douala-Cameroon.
  • Fotso Department of Biology, Higher Teacher Training College, The University of Bamenda, P.O. Box 39 Bambili-Cameroon.
  • Taffouo Victor Desiré Department of Botany, Faculty of Science, The University of Douala, P.O. Box 24157, Douala-Cameroon.

DOI:

https://doi.org/10.30574/gscbps.2020.12.3.0286

Keywords:

Dioscorea rotundata, growth parameters, salinity, biochemical constituents, mineral distribution

Abstract

Soil salinity has a negative impact on crop production over the world. The effect of salt stress on growth, chlorophyll content, mineral distribution, biochemical constituents and non-enzymatic antioxidant compounds of white yam (Dioscorea rotundata (L) var. gana) cultivar regularly consumed in Cameroon were investigated. Plants were subjected to four different levels concentrations of NaCl (0, 50, 100 and 200 mM), with 0 mM NaCl as a control. The supply of intake doses of NaCl in the culture medium significantly (P < 0.001) decreased the dry biomass (roots and shoots), growth parameters (number of leaves, noose diameter, leaf area and stem height) and chlorophyll contents from 100 mM NaCl. Mineral elements (K, Ca and Mg) and K/Na ratio significantly (P < 0.001) decreased in roots and shoots with increasing salinity. The higher sodium (Na) concentrations were recorded in shoots than in roots. The different biochemical constituents (proline (PRO), total soluble carbohydrates (CH), soluble proteins (PR) and total free amino acids (FAA)) and non-enzymatic antioxidants compounds (total phenolic (TP) and flavonoids (FLA) contents) significantly (P < 0.001) increased from 50 mM NaCl. The main strategy in cv. gana seems to increase osmotic adjustment through high accumulation of CH, PR, FAA and PRO in the leaves and they could eventually be considered as biochemical indicators of early selection and osmotic adjustment ability for salt tolerant plants. The gana variety could be encouraged to be planted on salt affected soils for the better development in salty areas.

Metrics

Metrics Loading ...

References

Ashraf M, Foolad MA. Improving plant abiotic stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environmental and Experimental Botany. 2007; 59(2): 206–216.

Nouck AE, Taffouo VD, Tsoata E, Dibong SD, Nguemezi ST, Gouado I, Youmbi E. Growth, Biochemical Constituents, Micronutrient Uptake and Yield Response of Six Tomato (Lycopersicum esculentum L.). Journal of Agronomy. 2016; 15(2): 58-67.

Hand MJ, Taffouo VD, Nouck AE, Nyemene KPJ, Tonfack LB, Meguekam TL, Youmbi E. Effects of Salt Stress on Plant Growth, Nutrient Partitioning, Chlorophyll Content, Leaf Relative Water Content, Accumulation of Osmolytes and Antioxidant Compounds in Pepper (Capsicum annuum L.) Cultivars. Notulae Botanicae Horticulture Cluj-Napoca Agrobotanici. 2017; 45(2): 481-490.

Ghassemi F, Jakeman AJ, Nix HA. Salinisation of Land and Water Resources. CAB International, Wallingford. 1995; 1-526.

Rais L, Massod A, Inam A, Khan N. Sulfur and nitrogen co-ordinately improve photosynthetic efficiency, growth and proline accumulation in two cultivars of mustard under salt stress. Journal of Plant Biochemistry and Physiology. 2013; 1(1): 101.

Cramer GR. Uptake and role of ions in salt tolerance. In: Jaiwal PK, Singh RP, Gulati A (eds) Strategies for improving salt tolerance in higher plants. Oxford and IBH publishing Co Pvt Ltd New Delhi. 1997; 55-86.

Alam MZ, Stuchbury TR, Naylor EL, Rashid MA. Effect of salinity on growth of some modern rice cultivar. Journal Agronomy. 2014; 3(1): 1-10.

Taffouo VD, Ekwel SS, Meguekam TL, Nouck AE, Wamba FO, Youmbi E. Changes in growth and nutrient uptake in response to foliar application of sodium and calcium chloride in Cowpea cultivars Vingna unguiculata L.Walp. African Journal of Biotechnology. 2014; 13(47): 4382-4389.

Meguekam TL, Taffouo VD, Grigore MN, Zamfirache MM, Youmbi E, Amougou A. Differential responses of growth, physiological and biochemical characteristics to salt stress in peanut (Arachis hypogaea L.) cultivars. Afrcan Journal of Biotechnology, 2014; 13(50): 4577-4587.

Turan MA, Turkmen N, Taban N. Effect of NaCl on stomatal resistance and proline, chlorophyll, Na, Cl and K concentrations of lentil plants. Journal of Agronomy. 2007; 6(2): 378-381.

Parida AK, Das AB. Salt tolerance and salinity effects on plants. Ecotoxicology and Environment Safety. 2005; 60(3): 324–349.

Kaviani B. Proline accumulation and growth of soybean callus under salt and water stress. International Journal of Agricultural Biology. 2008; 10(2): 221–223.

Singh P, Singh U, Eggum BO, Kumar KA, Andrews DJ. Nutritional evaluation of high protein genotypes of pearl millet (Pennisetum americanum (L) Leeke). Journal of the Science of Food and Agriculture. 1987; 38(1): 41-48.

Khosravinejad F, Heydari R, Farboodnia T. Effect of salinity on organic solutes contents in barley. Pakistan Journal Biological Science. 2009; 12(2): 158-162.

Bergmann H, Leinhos V, Machelet B. Increase of stress resistance in crop plants by using phenolic compounds. Acta Horticulturae. 1994; 381(50): 390-397.

Mohamed AA, Aly AA. Alternations of some secondary metabolites and enzymes activity by using exogenous antioxidant compound in onion plants grown under seawater salt stress. European Journal of Scientific research.2008; 3(2): 139-146.

Ngue BT, Mbairanodji A, Njualem D. Guide des techniques de production et de conservation d’ignames (Dioscorea spp.). Programme national de développement des racines et tubercules. 2007; 1-31.

Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 2008; 59(1): 651-681.

Din N, Saenger P, Priso JR, Dibong SD, Amougou A. Logging activities in mangrove forests: A case studies of Douala Cameroon. African journal of Environmental Science and Technology. 2008; 2(2): 22-30.

Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. University of California, College of Agriculture, Berkley. 1950; 1-34.

Taillièz, Ballo Koffi. Une méthode de mesure de la surface foliaire du palmier á huile. Oléagineux. 1992; 47(8-9): 537-553.

Pauwels JM, Van Ranst E, Verloo M, Mvondo ZA. Analysis methods of major plants elements. Pedology Laboratory manual : Methods of plants and soil analysis. Stock management equipment of worms and chemical equipment. AGCD, Brussels. Agriculture Publications. 1992; 1-28.

Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenylodase in Beta vulgaris. Plant physiology. 1949; 24 (1): 1-15.

Bates L, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant and Soil. 1973; 39 (2): 205-207.

Yemm EW, Cocking EC. The determination of amino acids with ninhydrin. The Analyst. 1955; 80: 209-213.

Bradford MM. A rapid and sensitive method for quantitation of microgram of protein utilizing the principle of protein-dye binding. Analytical Biochemistry Quantitative. 1976; 72(1-2): 248-254.

Dubois M, Gilles KA, Hamil JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chemistry. 1956; 28(3): 350-356.

Marigo G. On a fractionation method and estimation of the phenolic compounds in plant. Analysis. 1973; 2(2): 106-110.

Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food Drug Analysis. 2002; 10(3): 178-182.

Amira MS, Abdul Q. Effect of salt stress on plant growth and metabolism of bean plant (Vicia faba L.). Journal of the Saudi Society of Agricultural Sciences. 2011; 10(1): 7–15.

Assimakopoulou A, Salmas I, Nifakos K, Kalogeropoulos P. Effect of salt stress on three green bean (Phaseolus vulgaris L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-napoka. 2015; 43 (1): 113-118.

Dadkhah A. Effect of salinity on growth and leaf photosynthesis of two sugar beet (Beta vulgaris L.) cultivars. Journal of Agriculture Sciences and Technology. 2011; 13(7): 1001-1013.

Mudgal V, Madaan N, Mudgal A. Biochemical mechanisms of salt tolerance in plants: a review. International Journal of Botany. 2010; 6(2): 136-143.

Erum Mukhtar EH, Siddiqi KH, Bratti K, Nawez, Hussain K. Gas exchange attributes can be valuable selection criteria for salinity tolerance in Canola cultivars Brassica napus L. Pakistan Journal of Botany. 2013; 45(S1): 35-40.

Taffouo VD, Nouck AE, Dibong SD, Amougou A. Effects of salinity stress on seedlings growth, mineral nutrients and total chlorophyll of some tomato Lycopersicum esculentum L. cultivars. African Journal of Biotechnology. 2010; 9(33): 5366-5372.

Hamrouni L, Hanana M, Abdelly C, Ghorbel A. Exclusion du chlorure et inclusion du sodium : deux mécanismes concomitants de tolérance à la salinité chez la vigne sauvage Vitis vinifera sub sp. sylvestris (var.’sejnène’). Biotechnologie, Agronomie, Société et Environnement. 2011; 15(3): 387- 400.

Mehede HR, Lutful H, Mirza ML, Arif HKB, Alam MDJ. Evaluation of rice genotypes under salt stress at the seedling and reproductive stages using phenotypic and molecular markers. Pakistan journal of botany. 2014; 42(2): 423-432.

Wamba OF, Taffouo VD, Youmbi E, Ngwene B, Akoa A. Effects of organic and inorganic nutrients sources on the growth, total chlorophyll and yield of three Bambara Groundnut landraces in the coastal region in Cameroon. Journal of Agronomy. 2012; 11(2): 31- 42.

Amuthavalli P, Anbu D, Sivasankaramoorthy S. Effect of calcium chloride on growth and Biochemical constituents of cotton (Gossypium hirsutum L.) under salt stress. International Journal of Research in Botany. 2012; 2(3): 9-12.

Rahman IU, Iqbal Z, Ijaz F, Manan S, Solail Ali, Khan K, Karim S, Qadir G. Growth and yield of Phaseolus vulgaris as influenced by different nutrient treatment in manshera. International journal of agronomy and agriculture research. 2014; 4(3): 20-26.

Liu J, Zhu JK. A calcium sensor homolog requires for plant salt tolerance. Science. 1998; 280(5371): 1943-1945.

Ekwel SS, Nouck AE, Meguekam TL, Muyan FR, Ngotta BJB, Thiaze IA, Choula F, Ngo Nkot L, Priso RJ, Dibong SD, Ndono D, Taffouo VD. Influence des sols salins et calcaires sur la croissance, la nutition minerale et les composantes agronomiques du niébé (Vigna unguiculata (L) Walp.) dans trois zones agro écologiques du Cameroun. Journal of Applied Biosciences. 2019; 134(2019): 13673-13688.

Movafegh S, Roghie RJ, Shadi K. Effect of salinity stress on chlorophyll content, proline, water soluble carbohydrate, germination, growth and dry weight of three seedling barley (Hordeum vulgare L.) cultivars. Journal of Stress Physiology and Biochemistry. 2012; 8(4): 157-168.

Salama ZA, Gaafar A, El Fouly MM. Genotypic Variations in Phenolic, Flavonoids and Their Antioxidant activities in Maize Plants Treated with Zn (II) HEDTA Grown in Salinized Media . Agricultural Sciences. 2015; 6(3): 397-405.

Hichem H, Mounir D, Naceur EA. Differential responses of two maize (Zea mays L.) varieties to salt stress: Changes on polyphenols composition of foliage and oxidative damages, Industrial Crops Production. 2009; 30(1): 144–151.

Radi AA, Farghaly FA, Hamada AM. Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. Journal of Biology and Earth Sciences. 2013; 3(1): B72-B88.

Kapoor K, Srivastava A. Assessment of salinity tolerance of Vinga mungo var. Pu-19 using ex vitro and in vitro methods. Asian Journal of Biotechnology. 2010; 2(2): 73-85.

Cusido RM, Palazon J, Altobella T, Morales C. Effect of salinity on soluble protein, free amino acids and nicotine contents in Nicotiona rustica L. Plant Soil. 1987; 102(1): 55-60.

Dhanapackiam S, Ilyas M. Effect of salinity on chlorophyll and carbohydrate contents of Sesbania grandiflora seedlings. Indian Journal of Science Technology. 2010; 3(1): 64-66.

Shah AH, Shah SH, Ahmad H, Swati ZA. Cross tolerance mechanisms of osmotic and ionic stress adapted cell lines of rice towards salinity. International Journal of Agriculture and Biology. 2015; 17(5): 1019-1024.

Downloads

Published

2020-09-30

How to Cite

Ndouma Mbondjo Cécile, Nouck Alphonse Ervé, Titah Margaret Awah, Ndjouondo Gildas Parfait, Ekwel Sondi Serge, Fotso, & Taffouo Victor Desiré. (2020). Growth parameters, mineral distribution, chlorophyll content, biochemical constituents and non-enzymatic antioxidant compounds of white yam (Dioscorea rotundata (L) var. gana) grown under salinity stress. GSC Biological and Pharmaceutical Sciences, 12(3), 139–149. https://doi.org/10.30574/gscbps.2020.12.3.0286

Issue

Section

Original Article

Most read articles by the same author(s)