Catalysis and specificity of the polycondensation of aminopropyltrimethoxysilane on nucleic acids

Authors

  • Nathalie Jarroux Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025, Evry-courcouronnes, France.
  • Marie-Jeanne Clément Université Paris-Saclay, INSERM, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques, 91025, Evry, France.
  • Cedric Przybylski Present address: Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, ICPM, 4 place Jussieu, 75252 Paris cedex 05, France.
  • Olek Maciejak Université Paris-Saclay, INSERM, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques, 91025, Evry, France.
  • Patrick A. Curmi Université Paris-Saclay, INSERM, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques, 91025, Evry, France.
  • Hervé M. Cheradame Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025, Evry-courcouronnes, France.

DOI:

https://doi.org/10.30574/gscbps.2020.13.2.0332

Keywords:

Aminopropyltrimethoxysilane Templated Polycondensation, Nucleic Acids, Specific Catalysis.

Abstract

The polycondensation of a silane derivative such as aminopropyltrimethoxysilane (ATMS) in the presence of nucleic acids has never been investigated. Our group has previously demonstrated that in chloroform ATMS hydrolysis and polycondensation were faster when the reaction were carried out in the presence of double stranded DNA (146 bp). The results showed that the kinetics of ATMS hydrolysis was affected by the base type used, a fast hydrolysis reaction rate being observed with nucleotide molecules containing adenosine group, and that in the absence of water the amino group of deoxyadenosine units, and not the hydroxylic group of the sucrose residue, can react with ATMS methoxy groups. The present work was initiated aiming at providing a better understanding of this effect. It was observed that the polymerization degree of oligodeoxyadenylate has a clear impact on the kinetic of reaction this effect being as much important as the polymerization degree of the oligodeoxyadenylate was high. Structural investigation by molecular modeling showed that this enhanced reactivity can be explained by conformational effects. Altogether, these results are accounted for assuming that DNA can act as a specific template for ATMS polycondensation, in organic medium such as chloroform, opening the way to possible DNA encapsulation, and a new way for DNA chemical modification in organic solvent.

Metrics

Metrics Loading ...

References

N. Jarroux, M. J. Clément, M. Gervais, S. Moriau, O. Maciejak, P. A. Curmi and H. Cheradame, Templated polycondensation of aminopropyltrimethoxysilane on DNA, Europ. Polym. J., Jul 2017 DOI: 10.1016/j.eurpolymj.2017.09.045

A. Ponce-Salvatierra; K. Wawrzyniak-Turek; U. Steuerwald; C.Höbartner; V. Pena, Crystal structure of a DNA catalyst. Nature 2016; 529:231-34, and refs.inside.

X. Li, D.R. Liu, DNA-templated Organic Synthesis: Nature's Strategy for Controlling Chemical Reactivity Applied to Synthetic Molecules.Angew. Chem. Int. Ed. 2004; 43:4848-4870.

M. Surin,From nucleobase to DNA templates for precision supramolecular assemblies and synthetic polymers. Polymer Chemistry,The Royal Society of Chemistry, 2016; 7:4137-4140.

C.M. Niemeyer, Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. Angew. Chem. Int. Ed. 2001; (40):4128-4158.

M. Szwarc, Replica Polymerization. J. Polym. Sci., 1954; 13:317.

Physical Chemistry: Principles and Applications in Biological Sciences (3th Edition) 3th Edition by Ignacio Tinoco Jr., Kenneth Sauer, James C. Wang, Joseph D. Puglisi, Gerard Harbison, David Rovnyak. PrenticeHall; 3rd edition 1996

N. Russo, M. Toscano, A. Grand, F. Jolibois, Protonation of thymine, cytosine, adenine, and guanine DNA nucleic acid bases: Theoretical investigation into the framework of density functional theory.J. Comp. Chem., 1998; 19:989.

A. Liguori, A. Napoli, G. Sindona, R.G. Cooks R.G.,Determination of substituent effects on the proton affinities of natural nucleosides by the kinetic method. Rapid Comm. Mass Spectrom. 1994; 8:89.

K.B. Green-Church, P.A. Limbach P.A., Mononucleotide gas-phase proton affinities as determined by the kinetic method. J. Am. Soc. Mass Spectrom. 2000; 11:24.

M. Cypryk, Y. Apeloig,Ab Initio Study of Silyloxonium Ions.Organometallics 1997; 16:5938.

M. Cypryk, Y. Apeloig, Mechanism of the Acid-Catalyzed Si−O Bond Cleavage in Siloxanes and Siloxanols. A Theoretical Study.Organometallics 2002; 21:165.

S. Diré, E. Borovin, F. Ribot. Architecture of silesquioxanes; in Handbook of Sol-Gel Science and Technology, Springer 2016; 1-34.

H. Ishida, G. Kumar, Molecular characterization of composite interfaces, Springer 1985; p. 30.

D. F. Peppard, W. G. Brown, W. C. Johnson,Alcoholysis Reactions of Alkyl Silicates. J. Am. Chem. Soc. 1946; 68:73.

L. D. White, C. P. Tripp, Reaction of (3-Aminopropyl)dimethylethoxysilane with Amine Catalysts on Silica SurfacesJ. Colloid Interface Sci. 2000; 232:400.

M. M. Rozenman. D. R. Liu, DNA-templated synthesis in organic solvents. ChemBioChem 2006; 7:253-256.

Downloads

Published

2020-11-30

How to Cite

Nathalie Jarroux, Marie-Jeanne Clément, Cedric Przybylski, Olek Maciejak, Patrick A. Curmi, & Hervé M. Cheradame. (2020). Catalysis and specificity of the polycondensation of aminopropyltrimethoxysilane on nucleic acids. GSC Biological and Pharmaceutical Sciences, 13(2), 290–299. https://doi.org/10.30574/gscbps.2020.13.2.0332

Issue

Section

Original Article