Modeling sexual differences of body size variation in ground beetles in geographical gradient (The case study in Pterostichus oblongpunctatus Fabricius, 1787)

Authors

  • Raisa A Sukhodolskaya The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia.
  • Anatoly A Saveliev Kazan (Volga Region) Federal University, Kazan, Russia.
  • Nadezhda L Ukhova Visimskiy Nature Reserve, Kirovgrad, Russia.
  • Iraida G Vorobyova Mariy State University, Yoshkar Ola. Russia.
  • Igor A Solodovnikov Educational establishment, Vitebsk State P.M. Masherov University, Vitebsk, Belarus.
  • Anatoliy L Anciferov Kostroma Museum-Reserve, Kostroma, Russia.
  • Tatyana A Gordienko The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia.
  • Rifgat R Shagidullin The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia.
  • Dmitriy N Vavilov Kostroma Museum-Reserve, Kostroma, Russia.

DOI:

https://doi.org/10.30574/gscbps.2020.13.3.0388

Keywords:

Body size variation, Sexual size dimorphism, Ground beetles, Geographical gradient, Modeling, Saw-tooth pattern, Bergmann rule

Abstract

Fleshing out the mechanisms of Bergmann rule, we found saw-tooth pattern in body size variation in ground beetle Pterostichus oblongopunctatus. We sampled beetles in 2010 – 2018 at the forest undisturbed plots on the broad territory in Russia and Belarus. Investigating regions covered territory, extending to 3 degrees latitude and 31 degrees longitude. We measured six traits in every of 3294 caught individuals. ANOVA showed that geographical location and sex affected significantly body size of the species studied.  Mean values of each trait changed significantly from one studied region to another in females and males as well. Sexual size dimorphism in   species was female-biased. We performed models in R to estimate the steepness of body size variation in both sexes. In overwhelming majority of cases that parameter was equal in both sexes. So the hypothesis, that male′s variation is steeper in latitude gradient was not confirmed.

Metrics

Metrics Loading ...

References

Cushman JH, Lawton JH, Manly BF. Latitudinal patterns in European ant assemblages: variation in species richness and body size. Oecologia. 1993; 95:30-37.

Barlow ND. Size distributions of butterfly species and the effect of latitude on species sizes. Oikos. 1994; 326-332.

Hawkins BA, Lawton JH. Latitudinal gradients in butterfly body sizes: is there a general pattern? Oecologia. 1995; 102:31-36.

Blackburn TM, Gaston KJ, Loder N. Geographic gradients in body size: a clarification of Bergmann's rule. Diversity and distributions. 1999; 5:165-174.

Ray C.The application of Bergmann's and Allen's rules to the poikilotherms. Journal of morphology. 1960; 106:85-108.

Stevenson R. Body size and limits to the daily range of body temperature in terrestrial ectotherms. The American Naturalist. 1985; 125:102-117.

Conover DO, Present TM. Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oecologia. 1990; 83:316-324.

Masaki S. Geographic variation and climatic adaptation in a field cricket (Orthoptera: Gryllidae). Evolution. 1967; 725-741.

Masaki S. Climatic adaptation and photoperiodic response in the band-legged ground cricket. Evolution. 1972; 587-600.

Roff D. Optimizing development time in a seasonal environment: the ‘ups and downs’ of clinal variation. Oecologia. 1980; 45:202-208.

ROFF D. Phemological adaptation in a seasonal environment: a theoretical perspective. Diapose and Life Cycle Strategies in Insects. 1983; 253-270.

Iwasa Y, Ezoe H, Yamauchi A. Evolutionarily stable seasonal timing of univoltine and bivoltine insects. In Insect life-cycle polymorphism. Springer. 1994; 69-89.

Nygren GH, Bergström A, Nylin S. Latitudinal body size clines in the butterfly Polyommatus icarus are shaped by gene-environment interactions. Journal of Insect Science. 2008; 8:47.

Välimäki P, Kivelä S, Mäenpää M, Tammaru T. Latitudinal clines in alternative life histories in a geometrid moth. Journal of Evolutionary Biology. 2013; 26:118-129.

Conover DO, Schultz ET. Phenotypic similarity and the evolutionary significance of countergradient variation. Trends in Ecology & Evolution. 1995; 10:248-252.

Rensch B. Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonner Zoologische Beiträge. 1950; 1:58-69.

Abouheif E, Fairbairn DJ. A comparative analysis of allometry for sexual size dimorphism: assessing Rensch's rule. The American Naturalist. 1997; 149:540-562.

Fairbairn DJ. Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annual review of ecology and systematics. 1997; 28:659-687.

Fairbairn DJ, Blanckenhorn WU, Székely T. Sex, size and gender roles: evolutionary studies of sexual size dimorphism. Oxford University Press. 2007.

Fairbairn D. Introduction: the enigma of sexual size dimorphism. Sex, size and gender roles Evolutionary studies of sexual dimorphism. 2007:1-15.

Bidau CJ, Taffarel A, Castillo ER. Breaking the rule: multiple patterns of scaling of sexual size dimorphism with body size in orthopteroid insects. Revista de la Sociedad Entomológica Argentina. 2016; 75.

Fairbairn DJ, Preziosi RF. Sexual selection and the evolution of allometry for sexual size dimorphism in the water strider, Aquarius remigis. The American Naturalist. 1994; 144:101-118.

Kraushaar U, Blanckenhorn WU. Population variation in sexual selection and its effect on size allometry in two dung fly species with contrasting sexual size dimorphism. Evolution. 2002; 56:307-321.

Gustafsson A, Lindenfors P. Human size evolution: no evolutionary allometric relationship between male and female stature. Journal of human evolution. 2004; 47:253-266.

Fairbairn DJ. Allometry for sexual size dimorphism: testing two hypotheses for Rensch’s rule in the water strider Aquarius remigis. The American Naturalist. 2005; 166:S69-S84.

Young KA. Life–history variation and allometry for sexual size dimorphism in Pacific salmon and trout. Proceedings of the Royal Society B: Biological Sciences. 2005; 272:167-172.

Blanckenhorn WU, Stillwell RC, Young KA, Fox CW, Ashton KG. When Rensch meets Bergmann: does sexual size dimorphism change systematically with latitude? Evolution. 2006; 60:2004-2011.

Blanckenhorn W, Demont M. Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integrative and Comparative Biology. 2004; 44:413-424.

Ashton K. Are there general intraspecific patterns of body size variation in relation to latitude (and temperature) for tetrapod vertebrates. Integr Comp Biol. 2004; 44:401-412.

Koivula MJ. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys. 2011;287.

Homburg K, Schuldt A, Drees C, Assmann T. Broad‐scale geographic patterns in body size and hind wing development of western Palaearctic carabid beetles (Coleoptera: Carabidae). Ecography .2013; 36:166-177.

Sota T, Takami Y, Kubota K, Ujiie M, Ishikawa R. Interspecific body size differentiation in species assemblages of the carabid subgenus Ohomopterus in Japan. Population Ecology. 2000; 42:279-291.

Mrazović A, Rukavina I, Jelaska LŠ, Kučinić M. Body and wing size changes in Carabid beetles (Coleoptera: Carabidae) along the elevation gradient in forest habitats of Učka mountain. In 22 Symposium internationale entomofaunisticum Europae centralis–SIEEC22. 2011.

Tsuchiya Y, Takami Y, Okuzaki Y, Sota T. Genetic differences and phenotypic plasticity in body size between high‐and low‐altitude populations of the ground beetle C arabus tosanus. Journal of Evolutionary Biology. 2012; 25:1835-1842.

Cvetkovska-Gjorgjievska A, Hristovski S, Prelić D, Jelaska LŠ, Slavevska-Stamenković V, Ristovska M. Body size and mean individual biomass variation of ground-beetles community (Coleoptera: Carabidae) as a response to increasing altitude and associated vegetation types in mountainous ecosystem. Biologia. 2017; 72:1059-1066.

Kryzhanovsky O: Fam. Carabidae—ground beetles. Key to Insects of the European USSR. 1965; 2:29-77.

Sukhodolskaya RA, Avtaeva TA, Saveliev AA, Vavilov DN. Sexual Size Dimorphism in Ground Beetle Carabus cumanus Fischer von Waldheim, 1823 (Coleoptera, Carabidae) and its Variation in Different Traits. Baltic Journal of Coleopterology. 2019; 19:89-100.

Sukhodolskaya RA, Saveliev AA. Impact of environmental factors on the body shape variation and sexual shape dimorphism in Carabus granulatus L. (Coleoptera: Carabidae). Zoological Systematics. 2017; 42:71-89.

Sukhodolskaya RA, Saveliev AA, Muhammetnabiev TR. Sexual Dimorphism of Insects and Conditions of Its Manifestation. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016; 7:1992-2001.

Sukhodolskaya RA. Intraspecific body size variation in ground beetles (Coleoptera, Carabidae) in urban-suburban-rural-natural gradient. Acta Biologica Universitatis Daugavpiliensis. 2013; 13:121-128.

Shelomi M. Where are we now? Bergmann’s rule sensu lato in insects. The American Naturalist. 2012; 180:511-519.

Brygadyrenko V. Evaluation of ecological niches of abundant species of Poecilus and Pterostichus (Coleoptera: Carabidae) in forests of steppe zone of Ukraine. Entomologica Fennica. 2016; 27:81-100.

Irmler U. Long-term fluctuations of ground beetles in a wood-agrarian landscape of northern Germany (Coleoptera: Carabidae). Entomologia generalis. 2007:13-32.

Magura T, Tóthmérész B, Elek Z. Distribution of carabids following leaf-litter manipulation in a Norway spruce plantation. In How to protect or what we know about Carabid Beetles X European Carabidologist Meeting, Tuczno. 2001; 247-258.

Avtaeva T, Sukhodolskaya R, Skripchinsky A, Brygadyrenko V. Range of Pterostichus oblongopunctatus(Coleoptera, Carabidae) in conditions of global climate change. Biosystems Diversity. 2019; 27.

Lagisz M. Changes in morphology of the ground beetle Pterostichus oblongopunctatusF.(Coleoptera; Carabidae) from vicinities of a zinc and lead smelter. Environmental Toxicology and Chemistry: An International Journal. 2008; 27:1744-1747.

Belskaya E, Zolotarev M, Zinovyev E: Carabidae assemblages in pine forests with different recreation regimes within and outside a megalopolis. Urban Ecosystems. 2020; 23:27-38.

Kryzhanovsky O. Fam. Carabidae—ground beetles. Key to Insects of the European USSR. 1965; 2:29-77.

Sukhodolskaya Raisa A, Saveliev Anatoliy A, Gordienko Tatyana A, Vavilov Dmitriy N. Sexual size dimorphism in Ground Beetles and its modeling in latitude gradient. GSC Biological and Pharmaceutical Sciences. 2018; 3:11-18.

Sukhodolskaya R, Ananina T. Elevation changes of morphometric traits structure in Pterostichus montanus Motch.(Coleoptera, Carabidae). Asian Journal of Biology. 2017;1-9.

Cooper M. Latitudinal gradient in southern African forest millipede species richness. Journal of Natural History 2020.

Vandewoestijne S, Van Dyck H. Flight morphology along a latitudinal gradient in a butterfly: do geographic clines differ between agricultural and woodland landscapes? Ecography. 2011; 34:876-886.

Śniegula S, Gołąb MJ. Test for latitudinal variation of life history, behavior and mortality in the strictly univoltine damselfly S ympecma fusca (Z ygoptera: L estidae). Entomological Science. 2015; 18:479-488

Beasley DE, Penick CA, Boateng NS, Menninger HL, Dunn RR. Urbanization disrupts latitude‐size rule in 17‐year cicadas. Ecology and evolution. 2018; 8:2534-2541

Barber H. Traps for cave-inhabiting insects. Journal of the Elisha Mitchell Scientific Society. 1931; 46:259-266.

Sukhodolskaya R, Saveliev A. Body size variation in Ground Beetles (Coleoptera: Carabidae) in latitude gradient. Journal of Periodicum Biologorum. 2016; 3:273-278

Sukhodolskaya R, Eremeeva N. Body size and shape variation in Ground Beetle Carabus aeruginosus F.-W., 1822 (Coleoptera, Carabidae). Contemporary Problems of Ecology. 2013; 6:609-615.

Sukhodolskaya R. Variation in body size and body shape in ground beetle Pterostichus melanarius Ill.(Coleoptera, Carabidae). Journal of Agri-Food and Applied Sciences. 2014; 2:196-205.

Krasnov B, Ward D, Shenbrot G. Body size and leg length variation in several species of darkling beetles (Coleoptera: Tenebrionidae) along a rainfall and altitudinal gradient in the Negev Desert (Israel). Journal of Arid Environments. 1996; 34:477-489.

Jang Y, Won Y-J, Choe JC. Convergent and divergent patterns of morphological differentiation provide more evidence for reproductive character displacement in a wood cricket Gryllus fultoni (Orthoptera: Gryllidae). BMC evolutionary biology. 2009; 9:27.

De Los Santos A, Gómez-González L, Alonso C, Arbelo C, De Nicolás J. Adaptive trends of darkling beetles (Col. Tenebrionidae) on environmental gradients on the island of Tenerife (Canary Islands). Journal of Arid Environments. 2000; 45:85-98.

Calboli FC, Gilchrist GW, Partridge L. Different cell size and cell number contribution in two newly established and one ancient body size cline of Drosophila subobscura. Evolution. 2003; 57:566-573.

Partridge L, Coyne JA. Bergmann's rule in ectotherms: is it adaptive? Evolution. 1997; 51:632-635.

Karl I. Thermal adaptation in butterflies: patterns, significance and mechanisms. 2008.

Downloads

Published

2020-12-30

How to Cite

Raisa A Sukhodolskaya, Anatoly A Saveliev, Nadezhda L Ukhova, Iraida G Vorobyova, Igor A Solodovnikov, Anatoliy L Anciferov, Tatyana A Gordienko, Rifgat R Shagidullin, & Dmitriy N Vavilov. (2020). Modeling sexual differences of body size variation in ground beetles in geographical gradient (The case study in Pterostichus oblongpunctatus Fabricius, 1787). GSC Biological and Pharmaceutical Sciences, 13(3), 149–161. https://doi.org/10.30574/gscbps.2020.13.3.0388

Issue

Section

Original Article