Activity of mushrooms against diabetic and inflammation: A review

Authors

  • Lena Ahmed Saleh Al-Faqeeh Research Scholar in Microbiology, Department of Botany, Maulana Azad College of Arts, Science and Commerce, Dr. Rafiq Zakaria Campus, Rauza Bagh, Aurangabad, M.S., 431001, India.
  • Rafiuddin Naser Head Department of Botany, Maulana Azad College of Arts, Science and Commerce, Dr. Rafiq Zakaria Campus, Rauza Bagh, Aurangabad, M.S., 431001, India.
  • Kagne SR Associate Professor of Microbiology, Department of Microbiology, Badrinarayan Barwale Mahavidyalaya College, Jalna. M.S., 431001, India.
  • Subur W. Khan Department of Pharmacognosy, Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, M.S., 431001, India.

DOI:

https://doi.org/10.30574/gscbps.2021.14.2.0035

Keywords:

Inflammation, Diabetic, Mushrooms, Active compounds, Anti-inflammation

Abstract

Since ancient people, mushroom have been used as a source of food and in therapeutic remedies. Many recent studies confirm different biological activities of mushrooms which include antioxidant, antimicrobial, anticancer, antidiabetic and anti-inflammatory activities.

Many mushroom species have been evaluated for their antidiabetic and anti-inflammatory activities. This study highlights the effectiveness of mushrooms as antidiabetic and anti-inflammatory agents.

Metrics

Metrics Loading ...

References

Zheng Y, Bai L, Zhou Y, Tong R., Zeng M, Li X, et al. Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. Int J Biol Macromol. 2019; 121: 1240- 1253.

Ganesan K, Chung SK, Vanamala J, Xu B. Causal relationship between diet-induced gut microbiota changes and diabetes: A novel strategy to transplant Faecalibacterium prausnitzii in preventing diabetes. Int J Mol Sci. 2018; 19(3720): 1-28.

Ndisang JF, Jadhav A. The heme oxygenase system attenuates pancreatic lesions and improves insulin sensitivity and glucose metabolism in deoxycorticosterone acetate hypertension. Am J Physiol Regul Integr Comp. 2009; 98: 211-223.

Ozougwu JC, Obimba KC, Belonwu CD, Unakalamba CB. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol. 2013; 4: 46‑57.

Harris MI, Zimmet P. Classification of Diabetes Mellitus and Other Categories of glucose intolerance. In Albertik K,DeFronzo RA, Keen H, Zimmet P (Eds.). International Textbook of Diabetes Mellitus. John Wiley & Sons. 1997; 3-18.

Defronzo RA. The triumvirate: beta cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988; 37: 667‑687.

Spitaler MM, Graier WF. Vascular targets of redox signaling in diabetes mellitus. Diabetologia. 2012; 45: 476-494.

Katarea C, Saxena S, Agrawal S, Prasad GBKS. Alleviation of diabetes induced dyslipidemia by Lagenaria siceraria fruit extract in human type 2 diabetes. J Herb Med. 2013; 3: 1-8.

Li WL, Zheng HC, Bukuru J, Kimpe ND. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol. 2004; 92: 1-21.

Warraich HJ, Rana JS. Diabetic dyslipidemia: epidemiology and prevention of cardiovascular disease and implications of newer therapies. Curr Cardiol Rep. 2018; 20(12): 125.

Keerthana G, Kalaivani MK, Sumathy A. In-vitro alpha amylase inhibitory and anti-oxidant activities of ethanolic leaf extract of Croton bonplandianum. Asian J Pharm Clin Res. 2013; 6(4): 32-36.

Ravi B, Renitta RE, Prabha ML, Issac, R, Naidu S. Evaluation of Antidiabetic Potential of Oyster Mushroom (Pleurotus ostreatus) in Alloxan-Induced Diabetic Mice. Immunopharmacol Immunotoxicol. 2013; 35(1): 101-109.

Intekhab A, Barry G. Diabetes mellitus. Clin Dermatol. 2006; 24: 237- 246.

Puri KM, Prabhu PS, Dev G, Agarwal S, Murthy PS. Mechanism of antidiabetic action of compound GII purified from fenugreek (Trigonella foenum graecum) seeds. Indian J Clin Biochem. 2011; 26(4): 335-346.

Mishra SB, Vijayakumar M, Ojha SK, Verma A. Antidiabetic effect of Jatropha curcas L. leaves extract in normal and alloxan-induced diabetic rats. Int J Pharm Sci Rev Res. 2010; 2: 482-87.

Milani E, Nikfar S, Khorasani R, Zamani MJ, Abdollahi M. Reduction of diabetes-induced oxidative stress by phosphodiestrase inhibitors in rats. Comp Biochem Physiol C Toxicol Pharmacol. 2005; 140: 251-255.

Khan RMM, Chua ZJY, Tan JC, Yang Y, Liao Z, Zhao Y. From pre-diabetes to diabetes: Diagnosis, treatments and translational research. Medicina. 2019; 55(9): 546.

Gloyn AL, Drucker DJ. Precision medicine in the management of type 2 diabetes. Lancet Diabetes Endocrinol. 2018; 6: 891- 900.

Singh SK, Rai PK, Jaiswal D, Watal G. Evidence-based critical evaluation of glycemic potential of Cynodon dactylon. Evid Based Complement Alternat Med. 2007; 5 (4): 415- 420.

Bharti SK, Krishnan S, Gupta AK. Herbal formulation to combat type 2 diabetes mellitus. Germany: LAMBERT Academic Publishing. 2013.

Rafiuddin N. Plants known as antidiabetics from Aurangabad district- Maharashtra. Ann Pharm &Pharm Sci. 2010; 1(2): 85-87.

Hui H, Tang G, Go VL. Hypoglycemic herbs and their action mechanisms. Chin Med. 2009; 12: 4-11.

Malviya N, Jain S, Malviya S. Antidiabetic potential of medicinal plants. Acta Pol Pharm. 2010; 67(2): 113- 118.

Etxeberria U, de La Garza AL, Campin J, Martnez JA, Milagro, F.I. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Targets. 2012; 16(3): 269- 297.

Silva DD, Rapior S, Hyde KD, Bahkali AH. Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Divers. 2012; 56:1- 29.

Teng BS, Wang CD, Zhang D, Wu JS, Pan D, Pan LF, et al. Hypoglycemic effect and mechanism of a proteoglycan from Ganoderma lucidum on streptozotocin-induced type 2 diabetic rats. Eur Rev Med Pharmacol Sci. 2012; 16: 166- 175.

Cui B, Han L, Qu J, Lv Y. Hypoglycemic activity of Grifola frondosa rich in vanadium. Biol Trace Elem Res. 2009; 131(2): 186-191.

Konno S, Aynehchi S, Dolin DJ, Schwartz AM, Choudhury MS,Tazaki H. Anticancer and Hypoglycemic Effects of Polysaccharides in Edible and Medicinal Maitake Mushroom [Grifola frondosa (Dicks.: Fr.) S. F. Gray]. Int J Med Mushrooms. 2002; 4(3): 131-142.

Wani BA, Bodha RH, Wani AH. Nutritional and medicinal importance of mushrooms. J Med Plants Res. 2010; 4: 2598- 2604.

Chen J, Mao D, Yong Y, Li J, Wei H, Lu L. Hepatoprotective and hypolipidemic effects of water-soluble polysaccharidic extract of Pleurotus eryngii. Food Chemistry. 2012; 130(3): 687- 694.

Zhang HN, Lin ZB. Hypoglycemic effect of Ganoderma lucidum polysaccharides. Acta Pharmaceutica Sinica. 2004; 25: 191- 195.

Wasser SP, Weis AL. Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: current perspectives (review). Int J Med Mushrooms. 1999; 1: 31- 62.

Lee KH, Morris-Natschke SL, Yang X, Huang R, Zhou T, Wu SF, et al. Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine. J Tradit Complement Med. 2012; 2(2): 84- 95.

Sangi ASM, Bawadekji A, Al-Ali M. Comparative effects of metformin, Pleurotus ostreatus, Nigella sativa and Zingiber officinale on the streptozotocin‑induced diabetes mellitus in rats. Pharmacogn Mag. 2018; 14: S268-S273.

Ratnaningtyas NI, Hernayanti H, Andarwanti S, Ekowati N, Purwanti ES, Sukmawati D. Effects of Ganoderma lucidum extract on diabetic rats. Biosaintifika: J Bio & Bio Edu. 2018; 10: 642- 647.

Bach E, Hi E, Martins A, Nascimento P, Wadt N. Hypoglicemic and hypolipedimic effects of Ganoderma lucidum in streptozotocin-induced diabetic rats. Medicines. 2018; 5(3): 78.

Prabu M, Kumuthakalavalli R. Antidiabetic potential of the oyster mushroom Pleurotus florida (mont.) singer. Int J Curr Pharm Res. 2017; 9(4): 51-54.

Tong Wu, Baojun Xu. Antidiabetic and Antioxidant Activities of Eight Medicinal Mushroom Species from China. Int J Med Mushrooms. 2015; 17(2): 129- 140.

Wahab NAA, Abdullah N, Aminudin N. Characterisation of Potential Antidiabetic-Related Proteins from Pleurotus pulmonarius (Fr.) Quél. (Grey Oyster Mushroom) by MALDI-TOF/TOF Mass Spectrometry. Biomed Res Int. 2014; 1-9.

Biswas G, Acharya K. Hypoglycemic activity of ethanolic extract of Astraeus hygometricus (Pers.) Morg. in alloxan induced diabetic mice. Int J Pharm Pharm Sci. 2013; 5(1): 391-394.

Sonawane HB, Ghole VS, Garad S. Hypoglycemic Effect of Phansomba (Phellinus Badius Berk Ex Cooke) G. Cunn. on Alloxan-induced Diabetic Rats. J Nat Remedies. 2013; 13(1): 29- 34.

Fortes RC, Novaes MR, Recôva VL, Melo AL. Immunological, hematological, and glycemia effects of dietary supplementation with Agaricus sylvaticus on patients' colorectal cancer. Exp Biol Med. 2009; 234: 53- 62.

Fortes RC, Recôva VL, Melo AL, Novaes MRCG. Effects of dietary supplementation with medicinal fungus in fasting glycemia levels of patients with colorectal cancer: a randomized, double-blind, placebo-controlled clinical study. Nutr Hosp. 2008; 23: 591- 598.

Agrawal RP, Chopra A, Lavekar GS, Padhi MM, Srikanth N, Ota S, et al. Effect of oyster mushroom on glycemia, lipid profile and quality of life in type 2 diabetic patients. Aust J Medical Herbal. 2010; 22(2): 50- 54.

Vane JR, Botting RM. New insights into the mode of action of anti-inflammatory drugs. Inflamm Res. 1995; 44: 1-10.

Umapathy E, Ndebia EJ, Meeme A, Adam B, Menziura P, Nkeh-Chungag BN, et al. An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. J. Med. Plants Res. 2010; 4: 789-95.

Hossain M, Chowdhury M, Das S, Chowdhury I. In vitro thrombolytic and anti-inflammatory activity of Swertia chirata ethanolic extract. J Pharmacogn Phytochem. 2012; 1: 99-104.

Taofiq O, Martins A, Barreiro MF, Ferreira IC. Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends Food Sci Technol. 2016; 50: 193- 210.

Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell. 2010; 140(6): 859- 870.

Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010; 140(6): 918- 934.

Fakhouri F, Frémeaux-Bacchi V, Noël LH, Cook HT, Pickering MC C3 glomerulopathy: a new classification. Nat Rev Nephrol. 2010; 6(8): 494- 499.

Sevinsky R, Stewart D, Harirforoosh S. Nonsteroidal anti-inflammatory drugs: Is there a link between cardiovascular and renal adverse effects?. J Integr Nephrol Androl. 2017; 4: 1- 2.

Rang HP, Dale MM, Ritter JM, Flower RJ, Henderson G. Rang and Dale’s Pharmacology. 7th ed.,. London, UK: Churchill Livingstone. 2012.

Banukie WJANJ, Handunnetti SM, Wanigatunge CA, Fernando GH, Abeytunga DTU, Suresh TS. Anti-Inflammatory Activity of Pleurotus ostreatus, a Culinary Medicinal Mushroom, in Wistar Rats. Evid Based Complement Alternat Med. 2020; 1-9.

Sajon SR, Sana S, Rana S, Rahman SMM, Nishi ZM. Mushrooms: Natural factory of anti-oxidant, anti-inflammatory, analgesic and nutrition. J Pharmacogn Phytochem. 2018; 7(1): 464- 475.

Oguntibeju OO. Medicinal plants with anti-inflammatory activities from selected countries and regions of Africa. J Inflamm Res. 2018; 11: 307- 317.

Yang ML, Kuo PC, Hwang TL, Wu TS. Anti-inflammatory principles from Cordyceps sinensis. J Nat Prod. 2011; 74: 1996- 2000.

Tsai YJ, Lin LC, Tsai TH. Pharmacokinetics of adenosine and cordycepin, a bioactive constituent of Cordyceps sinensis in rat. J Agric Food Chem. 2010; 58: 4638- 4643.

Kim SJ, Kim MC, Lee BJ, Park DH, Hong SH, Um JY. Anti-Inflammatory activity of chrysophanol through the suppression of NF-kappaB/caspase-1 activation in vitro and in vivo. Molecules. 2010; 15: 6436-6451.

Won SU, Park EH. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J Ethnopharmacol. 2005; 96(3): 555-561.

Shrestha B, Sang KH, Sung JM, Sung GH. Fruiting body formation of Cordyceps militaris from multi-ascospore isolates and their single ascospore progeny strains. Mycobiology. 2012; 40: 100- 106.

Park SY, Jung SJ, Ha KC, Sin HS, Jang SH, Chae HJ, et al. Antiinflammatory effects of Cordyceps mycelium (Paecilomyces hepiali, CBG-CS-2) in raw 264.7 murine macrophages. Orient Pharm Exp Med. 2015; 15: 7- 12.

Liu Y, Wang J, Wang W, Zhang H, Zhang X, Han C. The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid Based Complement Alternat Med. 2015; 1-12.

Kim TW, Yoon DH, Cho JY, Sung GH. Anti-inflammatory compounds from Cordyceps bassiana (973.3). FASEB J. 2014; 28(1): 973- 973.

Lima AT, Santos MN, Souza LA, Pinheiro TS, Paiva AA, Dore CM, et al. Chemical characteristics of heteropolysaccharide from Tylopilus ballouii mushroom and its antioxidant and anti-inflammatory activities. Carbohydr Polym. 2016; 144: 400-409.

Zheng Y, Wang WD, LI Y. Antitumor and immunomodulatory activity of polysaccharide isolated from Trametes orientalis. Carbohydr Polym. 2015; 131: 248- 254.

Wang WJ, Wu YS, Chen S, Liu CF, Chen SN. Mushroom β-glucan may immunomodulate the tumor-associated macrophages in the Lewis lung carcinoma. Biomed Res Int. 2015; 1-15.

Silveira ML, Smiderle FR, Moraes CP, Borato DG, Baggio CH, Ruthes AC, et al. Structural characterization and anti-inflammatory activity of a linear β-D-glucan isolated from Pleurotus sajor-caju. Carbohydr Polym. 2014; 113: 588-596.

Smiderle FR, Baggio CH, Borato DG, Santana-Filho AP, Sassaki GL, Iacomini M, et al. Anti-Inflammatory properties of the medicinal mushroom cordyceps militaris might be related to its linear (1→3)-β-D-Glucan. PLoS One. 2014; 9(10): 1-11.

Lee KF, Chen JH, Teng CC, Shen CH, Hsieh MC, Lu CC, et al. Protective effects of Hericium erinaceus mycelium and its isolated erinacine A against ischemia-injury-induced neuronal cell death via the inhibition of iNOS/p38 MAPK and nitrotyrosine. Int J Mol Sci. 2014; 15(9): 15073-15089.

Swati A, Tiwari PS, Negi Meena HS. A Comparative evaluation of in vitro anti‑inflammatory and antifungal activity of Ganoderma lucidum strains DARL-4 and MS-1. Int J Green Pharm. 2018; 12(1): S126- S130.

Ruthes AC, Rattmann YD, Malquevicz-Paiva SM, Carbonero ER, Córdova MM, Baggioet CH, et al. Agaricus bisporus fucogalactan: structural characterization and pharmacological approaches. Carbohydr Polym. 2013; 92(1): 184-191.

Ma L, Chen H, Dong P, Lu X. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 2013; 139(1-4): 503-508.

Ruthes AC, Carbonero ER, C´ordova MM. Lactarius rufus (1 → 3), (1 → 6)- -d-glucans: structure, antinociceptive and anti-inflammatory effects. Carbohydr Polym. 2103; 94(1): 129-136.

Lavi I, Nimri L, Levinson D, Peri I, Hadar Y, Schwartz B. Glucans from the edible mushroom Pleurotus pulmonarius inhibit colitis-associated colon carcinogenesis in mice. J Gastroenterol. 2012; 47(5): 504-518.

Song HH, Chae HS, Oh SR, Lee HK, Chin YW. Anti-inflammatory and anti-allergic effect of Agaricus blazei extract in bone marrow-derived mast cells. The American J Chin Med. 2012; 40(5): 1073-1084.

Moro C, Palacios I, Lozano M, D’Arrigo M, Guillamón E, Villares A, et al. Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem. 2012; 130(2): 350- 355.

Carvalho CD, Alves NC, Monteiro AC, Pelógia NCC. Antinociceptive and anti-inflammatory effect of Agaricus blazei Murill in rats submitted to the modified formalin test. Revista Dor São Paulo. 2011; 12(1): 35-8.

Wang S, Marcone MF. The biochemistry and biological properties of the world’s most expensive underground edible mushroom: truffles. Food Res Int. 2011; 44(9): 2567-2581.

Queiroz LS, Nascimento MS, Cruz AKM, Castro AJG, Moura MDEV, Baseia IG, et al. Glucans from the Caripia montagnei mushroom present anti-inflammatory activity. Int Immunopharmacol. 2010; 10(1): 34-42.

Downloads

Published

2021-02-28

How to Cite

Lena Ahmed Saleh Al-Faqeeh, Rafiuddin Naser, Kagne SR, & Subur W. Khan. (2021). Activity of mushrooms against diabetic and inflammation: A review. GSC Biological and Pharmaceutical Sciences, 14(2), 037–044. https://doi.org/10.30574/gscbps.2021.14.2.0035

Issue

Section

Review Article