Pseudomonas aeruginosa: Mechanisms of resistance to antibiotics and case analysis

Authors

  • Verónica Jocelyne Flores-Velázquez University of Guadalajara, CUCBA. Las Agujas, 45200 Zapopan, Jal. Mexico.
  • Rocío Pérez-y-Terrón Microbiology and Molecular Biology Laboratory, Biological Sciences Faculty, Autonomous University of Puebla, Building 112-A, City University C. P. 72570 Puebla, Mexico.

DOI:

https://doi.org/10.30574/gscbps.2021.14.3.0066

Keywords:

Pseudomonas aeruginosa, Mechanisms, Resistance, Antibiotics

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen, causing great concern due to the rapid increase in its resistance to antibiotics. The objective of the research was to describe the resistance mechanisms that P. aeruginosa possesses, as well as to report its behavior against antibiotics in the years 2003 to 2018 in Mexico. A retrospective and longitudinal documentary research was carried out in different digital resources referring to antibiotic resistance in P. aeruginosa. The results showed that the main resistance mechanisms of P. aeruginosa are β-lactamases, ejection pumps, mutations in porins, acquisition of plasmids, low permeability, formation of biofilms, alterations in penicillin-binding proteins, modifying enzymes of aminoglycosides and mutations in the active site. The antibiotics with the highest percentage of resistance presented between the years 2003 to 2018 were imipenen IMP, gentamicin GEN, ticarcillin / clavulanate TIC, trimethoprim / sulfamethoxazole TMS, ticarcillin TC, ceftriaxone CRO, aztreonam AZT, ceftazidime CAZ, cefepime FEP, levofloxacin LEV, chloramphenicol CL, tigecilcin TIG and ciprofloxacin CIP, with a peak of resistance between the years 2007 to 2008 and a possible downward trend in 2018. The behavior of resistance between the years 2003 to 2018 report a downward trend in the last two years.

Metrics

Metrics Loading ...

References

Pinzón-Junca A. Pseudomonas. Acta Medica colombiana. 2019; 44(1): 52.

Paz-Zarza V, Mordani S, Martínez-Maldonado A, et al. Pseudomonas aeruginosa: pathogenicity and antimicrobial resistance in urinary tract infection. Revista Chilena Infectología. 2019; 36(1): 180-189.

Ochoa S, López-Montiel F, Escalona G, et al. Pathogenic characteristics of Pseudomonas aeruginosa strains resistant to carbapenems, associated with the formation of biofilms. Boletín médico del Hospital Infantil de México. 2013; 70(2): 136-150.

Rossolini G, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect. 2005; 4(1): 17-32.

Delden C, Iglewski, B. Cell-to-Cell Signaling and Pseudomonas aeruginosa Infections. Emerging Infectious Diseases. 1998; 4(1): 551-560.

Ramírez M, Díaz A. The misuse of antibiotics generates resistance! Michoacan University of San Nicolás de Hidalgo. 2014; 14(1): 4-5.

World Health Organization. Antibiotic resistance [Internet]. Region of the Americas: © WHO (World Health Organization); 2018 [10/07/2020].

Livermore D. Multiple Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa. Clinical Infectious Diseases. 2002; 34(1): 634-640.

Esnard S, Moya A, Cedré B, et al. Pseudomonas aeruginosa. Vaccines: a challenge to research. Vacci Monitor. 2004; 13(1): 1-13.

Pang Z, Raudonis R, Glick B, Lin T, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances. 2019; 37(1): 177-192.

Gómez C, Leal A, Pérez M, Navarrete M. Mechanisms of resistance in Pseudomonas aeruginosa: understanding a dangerous enemy. Revista de la Facultad de Medicina. 2005; 53(1): 27-34.

Baires A. Pharmacology and Therapeutics in Dentistry. 1st edition. Argentina: Médica Panamericana. 2012.

Moreno J, Castillo Y, Delgado A, Ayala F, Pinto A, Lima M, Freitas A, Valera A, Castillo Z. Extended-spectrum β-lactamases and carbapenemases in gram-negative germs isolated from clinical samples in hospital services. Boletín Venezolano de Infectología. 2015; 26(2): 65-76.

Gonzales-Escalante E. Metallo-β-lactamases: the end of β-lactams? Revista Peruana de Epidemiología. 2012; 16(3): 1-8.

Becerra G, Plascencia A, Luévanas A, Domínguez M, Hernández I. Mechanism of antimicrobial resistance in bacteria. Enfermedades infecciosas y Microbiología. 2009; 29(2): 76.

Betancor L, Gadea M, Flores K. Bacterial Genetics, Bacteriology Topics and Medical Virology. 2nd edition. Uruguay: Universidad de la República, Oficina del Libro FEMUR. 2006.

Gonzáles A, Salazar D, Rojas N, Hernández Y. Plasmid-Mediated Beta-Lactam Resistance in Pseudomonas aeruginosa Strains of Clinical Origin. Acta farmacéutica bonaerense. 2003; 22(3): 231-238.

Martínez L, Pascual Á. Mechanisms of resistance to carbapenems in Pseudomonas aeruginosa. España: Control Calidad SEIMC. 2020.

Ortega-Peña S, Hernández-Zamora E. Microbial biofilms and their impact on medical areas: pathophysiology, diagnosis and treatment. Boletín Médico del Hospital Infantil de México. 2018; 75(1): 79-88.

Martin G. Bacterial resistance to b-lactams. Evolution and Mechanisms. Archivos Venezolanos de Farmacología y Terapéutica. 2002; 21(1): 107-116.

Chen W, Zhang Y, Davies C. Penicillin-Binding Protein 3 Is Essential for Growth of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017; 61(1): 1651-1716.

Fujitani S, Moffett K, Yu V. Pseudomonas aeruginosa: Monograph [Internet]. Australia: Infectious Disease & Antimicrobial Agents. 2017.

Chávez-Jacobo V, Ramírez-Díaz M, Silva-Sánchez J, Cervantes C. Bacterial Resistance to Quinolones: Encoded Determinants in Plasmids. Revista de educación bioquímica. 2015; 34(1): 4-9.

Ruiz I, Diemond J, Pacheco D, Velázquez M, et al. Resistance in isolated bacteria in patients with nosocomial infections. Enfermedades Infecciosas y Microbiología. 2007; 27(1): 15-21.

Camacho A, Acosta G, Rositas F, Canizáles J. Antimicrobial resistance of Pseudomonas aeruginosa in a teaching hospital in northern Mexico. Enfermedades Infecciosas y Microbiología. 2007; 27(2): 44-48.

Murillo-Llanes J, Sosa-Quintero L, López-Castro G. Antimicrobial Resistance Pattern of Pseudomonas aeruginosa at the General Hospital of Culiacán. Revista de Archivos de Salud de Sinaloa. 2009; 3(2): 6-11.

Ortiz M, Mora J, Aguilera A. Bacterial colonization and antibacterial susceptibility of Pseudomonas aeruginosa isolated from infected burned patients from the Hospital Regional de Alta Especialidad de Veracruz. Enfermedades Infecciosas y Microbiología. 2009; 29(1): 11-19.

Rincón-León H, Navarro-Fuentes K. Trends in antimicrobial resistance in pathogens isolated from nosocomial infections. Revista Médica del Instituto Mexicano del Seguro Social. 2016; 54(1): 32-41.

Salazar-Holguín H, Cisneros-Robledo M. Antimicrobial resistance of causative agents of the main nosocomial infections. Revista Médica del Instituto Mexicano del Seguro Social. 2016; 54(4): 462-471.

Galván-Meléndez M, Castañeda-Martínez LY, Galindo-Burciaga M, Morales-Castro ME. Healthcare Associated Infections and Their Antimicrobial Resistance. Revista de Especialidades Médico-Quirúrgicas. 2017; 22(1): 1-13.

Garza-Montúfar M, Treviño-Valdez P, Garza-Salinas L. Bacterial resistance and comorbidities in ambulatory urological patients with positive urine cultures. Revista Médica del Instituto Mexicano del Seguro Social. 2018; 56(4): 347-53.

Gutiérrez J, Ramírez A, Martínez M, Coria J, et al. Multicenter study of nosocomial bacterial resistance in Mexico. Revista Latinoamericana de Infectología Pediátrica. 2017; 30(2): 68-75.

Barlandas-Rendón N, Quintana-Ponce S, Nájera-Bello J, Villanueva-Pastrana N, Cruz-Navarrete E, Maya-Rodríguez P, Torres-Guzmán F. Drug resistance of critical priority non-fermenting bacteria isolated in Chilpancingo, Guerrero. Revista Mexicana de Patología Clínica Medicina de Laboratorio. 2019; 66(4): 221-226.

Herreras M, et al. Informe JIACRA España. First integrated analysis of the use of antibiotics and its relationship with the emergence of resistance. 1st edition. España: Agencia española de medicamentos y productos sanitarios. 2018.

Downloads

Published

2021-03-30

How to Cite

Verónica Jocelyne Flores-Velázquez, & Rocío Pérez-y-Terrón. (2021). Pseudomonas aeruginosa: Mechanisms of resistance to antibiotics and case analysis. GSC Biological and Pharmaceutical Sciences, 14(3), 179–188. https://doi.org/10.30574/gscbps.2021.14.3.0066

Issue

Section

Original Article