Biologically relevant surrogates of coumarins: 2-phenyl H-isophosphinoline 2-oxides with antibacterial activity

Authors

  • Mina Hariri ICGM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France.
  • Fatemeh Darvish Department of Chemistry, K. N. Toosi University of Technology, P.O. Box, 15875-4416 Tehran, Iran.
  • Karen-Pacelye Mengue Me Ndong Université des Sciences et Techniques de Masuku, Franceville, Gabon.
  • Rachida Babouri ICGM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France.
  • Jacques Lebibi Université des Sciences et Techniques de Masuku, Franceville, Gabon.
  • Gabin Mwande- Maguene Université des Sciences et Techniques de Masuku, Franceville, Gabon.
  • Alexander R Burilov Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan 420088, Russian Federation.
  • Patricia Licznar-Fajardo Hydro Sciences Montpellier, Univ Montpellier, CNRS, IRD, CHU Montpellier, Montpellier, France.
  • Jean-Luc Pirat ICGM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France.
  • Tahar Ayad ICGM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France.
  • David Virieux ICGM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France.

DOI:

https://doi.org/10.30574/gscbps.2021.16.2.0252

Keywords:

Isophosphinoline-2-oxides, Phosphacoumarins, Synthesis, Antibacterial activities

Abstract

The present study aims to investigate the in vitro antibacterial activities of several isophosphinoline-2-oxides that can be perceived as combined bio isosteres of coumarins and flavonoids. More specifically, antibacterial activity was evaluated against four bacterial strains, including the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa and the Gram-positive bacteria Staphylococcus aureus and Enterococcus faecalis by using disk diffusion assay. Notably, isophosphinoline-2-oxide compounds showed promising and highly selective antimicrobial activity against S. aureus

Metrics

Metrics Loading ...

References

(a)Neu HC. Science 1992; 257, 1064. https://doi:10.1126/science.257.5073.1064. (b) Martens E.; Demain A. L. Jpn. J. Antibiot. 2017, 70, 520. https://doi:10.1038/ja.2017.30. (c) Bell B. G.; Schellevis F.; Stobberingh E.; Goossens H.; Pringle M. BMC Infect. Dis. 2014, 14. https://doi.org/10.1186/1471-2334-14-13.

(a) Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, Harbarth S. Nat Rev Dis Prim. 2018; 4: 18033. https://doi:10.1038/nrdp.2018.33. (b) Lakhundi S, Zhang K. Clin Microbiol Rev. 2018; 31: 1. https://doi:10.1128/CMR.00020-18. (c) Kulkarni AP, Nagvekar VC, Veeraraghavan B, Warrier AR TS D, Ahdal J, Jain R. Hindawi Interdisciplinary Perspectives on Infectious Diseases 2019; Article ID 7601847, 1. https://doi.org/10.1155/2019/7601847.

de Kraker ME, Stewardson AJ, Harbarth S. PLoS Med. 2016; 13: 11.

(a) 2020 Antibacterial agents in clinical and preclinical development: an overview and analysis. Geneva: World Health Organization. 2021; ISBN 978-92-4-002130-3. (b) Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. BMC Infect Dis. 2014; 14: 13. https://doi:10.1186/1471-2334-14-13. (c) Rocha-Granados MC, Zenick B, Englander HE, Mok WWK. Cell Signal. 2020; 75: 109750.

(a) Smith PA, Romesberg FE. Nat Chem Biol. 2007; 3: 549. https://doi:10.1038/nchembio.2007.27. (b) Feature N. Nat Rev Drug Discov. 2007; 6: 8. https://doi:10.1038/nrd2225.

Fesatidou M, Petrou A, Athina G. Curr Pharm Des. 2020; 26: 867.

(a) Petersen P, Godtfredsen J, Boysen G, Andersen E, Andersen B. Lancet. 1989; 333: 175. https://doi:10.1016/S0140-6736(89)91200-2. Levine MN, Hirsh J, Gent M, Turpie AG, Weitz J, Ginsberg J, Geerts W, LeClerc J, Neemeh J. Thromb. Haemost. 1995; 74: 606.

(a) Walsh TJ, Standiford HC, Reboli AC, John F, Mulligan ME, Ribner BS, Montgomerie JZ, Goetz MB, Mayhall CG, Rimland D. Antimicrob Agents Chemother. 1993; 37: 1334. https://doi:10.1128/AAC.37.6.1334. (b) Raad II, Hachem RY, Abi-Said D, Kenneth VI, Rolston MD, Whimbey E, Buzaid EC, Legha S. Cancer 1998; 82: 403. https://doi:10.1002/(SICI)1097-0142(19980115)82:2<412::AID-CNCR22>3.0.CO;2-0.

(a) Patel G, Banerjee S, Curr Org Chem. 2020; 24: 2566. https://doi:10.2174/1385272824999200709125717. (b) Calcio Gaudino E, Tagliapietra S, Martina K, Palmisano G, Cravotto G. RSC Adv. 2016; 6: 46394. https://doi:10.1039/C6RA07071J. (c) Vazquez-Rodriguez S, Joao Matos M, Borges F, Uriarte E, Santana L, Curr Top Med Chem. 2015; 15: 1755. https://doi:10.2174/1568026615666150427125916. (d) Riveiro ME, De Kimpe N, Moglioni A, Vazquez R, Monczor F, Shayo C, Davio C. Curr Med Chem. 2010; 17: 1325. https://doi:10.2174/092986710790936284.

(a) de Souza SM, Delle Monache F, Smânia Jr A, Z. Naturforsch. 1999; 54c: 169. (c) Smyth T, Ramachandran VN, Smyth WF. International Journal of Antimicrobial Agents. 2009; 33: 421. (d) Yang L, Ding W, Xu Y, Wu D, Li S, Chen J, Guo B. Molecules 2016; 21: 468. https://doi.org/10.1016/j.ijantimicag.2008.10.022.

Kafarski P, Lejczak B. The Biological Activity of Phosphono- and Phosphinopeptides in: Aminophosphonic and aminophosphinic acids. John Wiley & Sons, LTD. 2000; 407-442.

Chekan JR, Cogan DP, Nair SK. Medchemcomm. 2016; 7: 28. https://doi:10.1039/c5md00351b.

(a) Patani GA, LaVoie EJ. Chem Rev. 1996; 96: 3147. https://doi:10.1021/cr950066q. (b) Wermuth CG, Ciapetti P, Giethlen B, Bazzini P, Bioisosterism. In: Comprehensive Medicinal Chemistry II. Vol 2. Elsevier; 2007; 649-711. https://doi:10.1016/B0-08-045044-X/00051-1.

Lima L, Barreiro E. Curr Med Chem. 2005; 12: 23. https://doi:10.2174/0929867053363540.

(a) Smith BR, Eastman CM, Njardarson JT, Beyond CJ, Med Chem. 2014; 57: 9764. https://doi:10.1021/jm501105n. (b) Finkbeiner P, Hehn JP, Gnamm CJ. Med Chem. 2020; 63: 7081. https://doi:10.1021/acs.jmedchem.0c00407. (c) Volle JN, Guillon R, Bancel F, Bekro YA, Pirat JL, Virieux D. Phosphono- and Phosphinolactones in the Life Sciences. Advances in Heterocyclic Chemistry. 2016; 118: 129. https://doi.org/10.1016/bs.aihch.2015.10.004. (d) Brewster R, Vandergeten MC, Montel F Eur. J. Org. Chem. 2014; 905. https://doi.org/10.1002/ejoc.201301299. (e) Mucha A, Kafarski P, Berlicki LJ. Med. Chem. 2011; 54: 5955. https://doi.org/10.1021/acs.jmedchem.0c00407. (f) Moonen K, Laureyn I, Stevens CV. Chem. Rev. 2004; 104: 6177.

(a) Clarion L, Jacquard C, Sainte-Catherine O, Loiseau S, Filippini D, Hirlemann MH, Volle JN, Virieux D, Lecouvey M, Pirat JL, Bakalara N. J Med Chem. 2012; 55: 2196. https://doi:10.1021/jm201428a. (b) Clarion L, Jacquard C, Sainte-Catherine O, Decoux M, Loiseau S, Rolland M, Lecouvey M, Hugnot JP, Volle JN, Virieux D, Pirat JL Bakalara N. J Med Chem. 2014; 8293. https://doi:10.1021/jm500522y. (c) Babouri R, Rolland M, Sainte-Catherine O, Kabouche Z, Lecouvey M, Bakalara N, Volle JN, Virieux D, Pirat JL, Eur J Med Chem. 2015; 104: 33. https://doi:10.1016/j.ejmech.2015.09.027. (d) Hassani Z, Saleh A, Turpault S, Khiati S, Morelle W, Vignon J, Hugnot JP, Uro-Coste E, Legrand P, Delaforge M, Loiseau S, Clarion L, Lecouvey M, Volle JN, Virieux D, Pirat JL, Duffau H, Bakalara N. Mol Cancer Res. 2017; 15: 1376. https://doi:10.1158/1541-7786.MCR-17-0120. (e) Bousseau S, Marchand M, Soleti R. FASEB J. 2019; 33: 5864. https://doi:10.1096/fj.201801450RRR.

(a) Volle JN, Filippini D, Krawczy B, Kaloyanov N, Van der Lee A, Maurice T, Pirat JL, Virieux D, Org Biomol Chem. 2010; 8: 1438. https://doi:10.1039/b919345f. (b) Maurice T, Volle JN, Strehaiano Crouzier L, Pereira C, Kaloyanov N, Virieux D, Pirat JL. Pharmacol Res. 2019; 144: 315. https://doi:10.1016/j.phrs.2019.04.026.

(a) Summy JM, Trevino JG, Lesslie DP, Justin M. Summy, Trevino JG, Lesslie DP, Baker CH, Shakespeare WC, Wang Y, Sundaramoorthi R, Metcalf C. A. III; Keats JA, Sawyer TK, Gallick GE, Mol Cancer Ther. 2005; 4: 1900. https://doi:10.1158/1535-7163.MCT-05-0171. (b) Huang WS, Liu S, Zou D, Wang Y, Zhou T, Romero J, Kohlmann A, Li F, Qi J, Cai L, Dwight TA, Xu Y, Xu R, Dodd R. Toms A, Parillon L, Lu X, Anjum R, Zhang S, Wang F, Keats J, Wardwell SD, Ning Y, Xu Q, Moran LE, Mohemmad QK, Gyung Jang H, Clackson T, Narasimhan NI, Rivera VM, Zhu X, Dalgarno D, Shakespeare WCJ. Med. Chem. 2016; 59: 4948. https://doi:10.1021/acs.jmedchem.6b00306. (c) Fedyk A, Slobodyanyuk EY, Stotska O, Vashchenko BV, Volochnyuk DM, Sibgatulin DA, Tolmachev AA, Grygorenko OO. Eur J Org Chem. 2021; 1. https://doi:10.1002/ejoc.202100581.

(a) Belyaev A, Zhang X, Augustyns K, J Med Chem. 1999; 42: 1041. https://doi:10.1021/jm981033g. (b) Foust B. J, Poe MM, Lentini NA, Hsiao CHC, Wiemer AJ, Wiemer DF. ACS Med Chem Lett. 2017; 8: 914. https://doi:10.1021/acsmedchemlett.7b00245.

Sutanto F, Konstantinidou M, Dömling A. RSC Med Chem. 2020; 1: 876. https://doi:10.1039/D0MD00154F.

a) Wallis CJ, Virieux D, Cristau HJ. Diphenyl(vinyl)- phosphine Oxide. Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Ltd: Chichester, U.K. 2005; 1: 1. (b) Rahman MS, Steed JW, Hii KK. Synthesis 2000; 1320. https://doi:10.1055/s-2000-6422. (c) Scherner C, Ergüden JK, Adiwidjaja G, Schaumann E. Synthesis; 2014; 46: 2506. (d) Gonzalez-Nogal AM, Cuadrado P, Sarmentero MA. Tetrahedron. 2010; 66: 9610. https://doi:10.1016/j.tet.2010.10.016.

Hariri M, Darvish F, Mengue Me Ndong KP, Sechet N, Chacktas G, Boosaliki H, Tran Do ML, Mwande-Maguene G, Lebibi J, Burilov AR, Ayad T, Virieux D, Pirat JL. JOC. 2021; 86: 7813. https://doi.org/10.1021/acs.joc.1c00648.

https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2021_manuals/Manual_v_9.0_EUCAST_Disk_Test_2021.pdf

(a) Banwan K, Senok AC, Rotimi VOJ. Infect Public Health. 2009; 2: 62. https://doi:10.1016/j.jiph.2009.04.003. (b) Munita JM, Bayer AS, Arias CA. Clin Infect Dis. 2015; 61: S48. https://doi:10.1093/cid/civ523. (c) Abbas M, Paul M, Huttner A. Clin Microbiol Infect. 2017; 23: 697. https://doi:10.1016/j.cmi.2017.06.010.

(a) Gehringer M Laufer SAJ. Med Chem. 2019; 62: 5673. https://doi:10.1021/acs.jmedchem.8b01153. (b) Mons E, Jansen IDC, Loboda J, van Doodewaerd BR, Hermans J, Verdoes M, van Boeckel CAA, van Veelen PA, Turk B, Turk D, Ovaa H. J Am Chem Soc. 2019; 141: 3507. https://doi:10.1021/jacs.8b11027. (c) Mons E, Kim RQ, van Doodewaerd BR, van Veelen PA, Mulder MPC, Ovaa H. J Am Chem Soc. 2021; 143: 64: 23.

Downloads

Published

2021-08-30

How to Cite

Hariri, M. ., Darvish, F. ., Ndong, K.-P. M. M. ., Babouri, R. ., Lebibi, J. ., Maguene, G. M.-., Burilov, A. R. ., Licznar-Fajardo, P. ., Pirat, J.-L. ., Ayad, T. ., & Virieux, D. . (2021). Biologically relevant surrogates of coumarins: 2-phenyl H-isophosphinoline 2-oxides with antibacterial activity. GSC Biological and Pharmaceutical Sciences, 16(2), 283–296. https://doi.org/10.30574/gscbps.2021.16.2.0252

Issue

Section

Original Article