Silver/chitosan/ascorbic acid nanocomposites ameliorate diabetic nephropathy in the model of type 1 diabetes

Authors

  • Esraa Abu El Qassem Mahmoud Zoology Department - Faculty of Science - Cairo University- 2613, Giza, Egypt.
  • Ayman S Mohamed Zoology Department - Faculty of Science - Cairo University- 2613, Giza, Egypt.
  • Sohair R Fahmy Zoology Department - Faculty of Science - Cairo University- 2613, Giza, Egypt.
  • Amel Mahmoud Soliman Zoology Department - Faculty of Science - Cairo University- 2613, Giza, Egypt.
  • Khadiga Gaafar Zoology Department - Faculty of Science - Cairo University- 2613, Giza, Egypt.

DOI:

https://doi.org/10.30574/gscbps.2021.16.3.0263

Keywords:

Type 1 Diabetes, AgNPs/chitosan/ascorbic acid nanocomposites, Rats, Kidney functions, Oxidative stress

Abstract

Aims: The present study aimed to evaluate anti-diabetic properties of AgNPs/chitosan/ascorbic acid nanocomposites (Ag-NCs) in streptozotocin-induced diabetic rats. 

Main methods: Eighteen male Wistar albino rats were divided into three main groups (6 rats/group); control, diabetic and Ag-NCs groups. Control group: after a single dose of citrate buffer (0.1 mol/l, i.p), the rats orally received 1 ml distilled water daily for four weeks. The diabetic model was induced by a single dose of streptozotocin (60 mg/kg, i.p) for type 1diabetes. Diabetic groups were treated orally with and Ag-NCs (0.25mg/Kg body weight) daily for four weeks.

Key findings: AgNPs/chitosan/ascorbic acid nanocomposite group showed a reduction in the concentrations of glucose, NO, MDA, creatinine, urea and uric acid. At the same time, it appeared a general increase in insulin, CAT, and SOD activities and GSH concentration. The histopathological investigation illustrated a clear improvement in renal architecture. 

Significance: The suggested mechanism of action for Ag-NCs in decreasing diabetic nephropathy includes two pathways; the hypoglycemic activity and the antioxidant role of Ag-NCs

Metrics

Metrics Loading ...

References

Ansari S. Mechanism of diabetic nephropathy and traditional drugs for management. BLDE University Journal of Health Sciences. 2020; 5(1): 8.

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes research and clinical practice. 157: 107843.

Devendra D, Liu E, Eisenbarth GS. Type 1 diabetes: recent developments. Bmj. 2004; 328(7442): 750-754.

Vana DR, Adapa D, Prasad VS, Choudhury A, Ahuja G. Diabetes mellitus types: Key genetic determinants and risk assessment. Genet Mol Res. 2019; 18(2): 27.

Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019; 62(1): 3-16.

Naser M, Nasr MM, Shehata LH. Nanotechnology in Diagnosis and Treatment of Diabetes Mellitus. International Journal of Progressive Sciences and Technologies. 2021; 24(1): 586-596.

Rashid R, Naqash A, Bader GN, Sheikh FA. Nanotechnology and Diabetes Management: Recent Advances and Future Perspectives. Application of Nanotechnology in Biomedical Sciences. 2020; 99-117.

Rashid R, Naqash A, Bader GN, Sheikh FA. Nanotechnology and Diabetes Management: Recent Advances and Future Perspectives. Application of Nanotechnology in Biomedical Sciences. 2020; 99-117.

Patil KB, Patil NB, Patil SV, Patil VK, Shirsath PC. Metal based Nanomaterial’s (Silver and Gold): Synthesis and Biomedical application. Asian Journal of Pharmacy and Technology. 2020; 10(2): 97-106.

Kalaivani R, Maruthupandy M, Muneeswaran T, Beevi AH, Anand M, Ramakritinan CM, et al. Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Frontiers in Laboratory Medicine. 2018; 2(1): 30-35.

Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials. 2018; 8(9): 681.

Durán N, Silveira CP, Durán M, Martinez DS. Silver nanoparticle protein corona and toxicity: a mini-review. Journal of nanobiotechnology. 2015; 13(1):1-17.

Malapermal V, Botha I, Krishna SB, Mbatha JN. Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi Journal of Biological Sciences. 2017; 24(6): 1294-1305.

Singla R, Soni S, Patial V, Kulurkar PM, Kumari A, Mahesh S, et al. In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. International journal of biological macromolecules. 2017; 105: 45-55.

Alkhalaf MI, Hussein RH, Hamza A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi Journal of Biological Sciences. 2020; 27(9): 2410-2419.

Sarkar S, Das D, Dutta P, Kalita J, Wann SB, Manna P. Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydrate Polymers. 2020; 116594.

Sutthasupha P, Lungkaphin A. The potential roles of chitosan oligosaccharide in prevention of kidney injury in obese and diabetic conditions. Food & Function. 2020; 11(9): 7371-7388.

Shi L, Du X, Guo P, Huang L, Qi P, Gong Q. Ascorbic acid supplementation in type 2 diabetes mellitus: A protocol for systematic review and meta-analysis. Medicine. 2020; 99(45).

Kandhare AD, Mukherjee A, Bodhankar SL. Antioxidant for treatment of diabetic nephropathy: A systematic review and meta-analysis. Chemico-biological interactions. 2017; 278: 212-221.

Tesch GH, Allen TJ. Rodent models of streptozotocin‐induced diabetic nephropathy (Methods in Renal Research). Nephrology. 2007; 12(3): 261-266.

Regiel-Futyra A, Kus-Li´skiewicz M, Sebastian V, Irusta S, Arruebo N, Kyzioł A, et al. Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes. RSC Adv. 2017; 7: 52398–52413.

Sobczak-Kupiec A, Malina D, Wzorek Z, Zimowska M. Influence of silver nitrate concentration on the properties of silver nanoparticles. Micro Nano Letters. 2011; 7(8): 656 –660.

SIBIYA PN, MOLOTO MJ. Effect of precursor concentration and pH on the shape and size of starch capped silver selenide (Ag2Se) nanoparticles. Chalcogenide Letters. 2014; 11(11):577 - 588.

Kaushik M, Fraschini C, Chauve G, Putaux JL, Moores A. Transmission Electron Microscopy for the Characterization of Cellulose Nanocrystals. In The Transmission Electron Microscope - Theory and Applications.: InTech. 2015.

Chen X, Fu XS, Li CP, Zhao HX. ER stress and ER stress-induced apoptosis are activated in gastric SMCs in diabetic rats. World Journal of Gastroenterology: WJG. 2014; 20(25): 8260.

Elbehiry A, Al‐Dubaib M, Marzouk E, Moussa I. Antibacterial effects and resistance induction of silver and gold nanoparticles against Staphylococcus aureus-induced and the potential toxicity in rats. MicrobiologyOpen. 2018; e698.

Freund A, Johnson SB, Rosenbloom A, Alexander B, Hansen CA. Subjective symptoms, blood glucose estimation, and blood glucose concentrations in adolescents with diabetes. Diabetes Care. 1986; 9(3): 236-243.

Herbert V, Lau KS, Gottlieb CW, Bleicher SJ. Coated charcoal immunoassay of insulin. The Journal of Clinical Endocrinology & Metabolism. 1965; 25(10): 1375-1384.

Schirmeister J, Man NK, Hallauer W, Gropp H. Diskrepanz der Serumkonzentrationen von Harnstoff und Kreatinin nach akutem Nierenversagen. DMW-Deutsche Medizinische Wochenschrift. 1969; 94(10): 482-485.

Fawcett JK. Scott Je. A rapid and precise method for the determination of urea. J Clin Pathol. 1960; 13: 156-9.

Barham D, Trinder P. A colorimetric method for the determination of serum uric acid. Analyst. 1972; 97: 142.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry. 1979; 95(2): 351-358.

Beutler E. Improved method for the determination of blood glutathione. J. lab. clin. Med. 1963; 61: 882-888.

Montgomery HA, Dymock JF. Determination of nitrite in water. Analyst. 1961; 86(102): 414.

Nishikimi M, Roa NA, Yogi K. Measurement of superoxide dismutase. Biochem. Biophys. Res. Commun. 1972; 46: 849-854.

Aebi H. Catalase Methods Enzymol. 1984; 2:673–684.

Bancroft JD, Gamble M. Theory and practice of histological techniques. 1990.

Association AD. Diagnosis and classification of diabetes mellitus. Diabetes care, 37(Supplement 1). S81-S90.

Papadopoulou-Marketou N, Paschou SA, Marketos N, Adamidi S, Adamidis S, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes. Minerva medica. 2017; 109(3): 218-228.

Gross JL, De Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes care. 2005; 28(1): 164-176.

Mojaddidi MA, EL-Bab MF, AL-Nozha OM, Bughdady HH, Hesham A. Pathophysiological changes in diabetic nephropathy. Arch. Sci. 2013; 66(5): 47-70.

Sudamrao Garud M, Anant Kulkarni Y. Hyperglycemia to nephropathy via transforming growth factor beta. Current diabetes reviews. 2014; 10(3): 182-189.

Kahanovitz L, Sluss PM, Russell SJ. Type 1 diabetes–a clinical perspective. Point of care. 2017; 16(1): 37.

Mali KK, Dias RJ, Yadav SJ. Antidiabetic effect of garcinol on streptozotocin-induced diabetic rats. Indian Journal of Pharmaceutical Sciences. 2017; 79(3): 463-468.

Torabian F, Rezayat AA, Nour MG, Ghorbanzadeh A, Najafi S, Sahebkar A, et al. Administration of Silver Nanoparticles in Diabetes Mellitus: A Systematic Review and Meta-analysis on Animal Studies. Biological Trace Element Research. 2021; 1-11.

Meng QY, Wang H, Cui ZB, Yu WG, Lu XZ. Chitosan Oligosaccharides Attenuate Amyloid Formation of hIAPP and Protect Pancreatic β-Cells from Cytotoxicity. molecules. 2020; 25(6): 1314.

Ju C, Yue W, Yang Z, Zhang Q, Yang X, Liu Z, et al. Antidiabetic effect and mechanism of chitooligosaccharides. Biological and Pharmaceutical. 2010; 33(9): 1511-1516.

Du B, Yu M, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nature Reviews Materials. 2018; 3(10): 358-374.

Mauer SM, Steffes MW, Brown DM. The kidney in diabetes. The American journal of medicine. 1981; 70(3): 603-612.

Fernandes SM, Cordeiro PM, Watanabe M, Fonseca CD, Vattimo MD. The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats. Archives of endocrinology and metabolism. 2016; 60(5):443-449.

Almdal TP, Vilstrup H. Strict insulin therapy normalises organ nitrogen contents and the capacity of urea nitrogen synthesis in experimental diabetes in rats. Diabetologia. 1988; 31(2): 114-118.

Elekofehinti OO, Oyedokun VO, Iwaloye O, Lawal AO, Ejelonu OC. Momordica charantia silver nanoparticles modulate S OCS/JAK/STAT and P13K/Akt/PTEN signalling pathways in the kidney of streptozotocin-induced diabetic rats. Journal of Diabetes & Metabolic Disorders. 2021; 1-16.

Sutthasupha P, Lungkaphin A. The potential roles of chitosan oligosaccharide in prevention of kidney injury in obese and diabetic conditions. Food & Function. 2020; 11(9): 7371-7388.

Santosh HN, David CM. Role of ascorbic acid in diabetes mellitus: a comprehensive review. Journal of Medicine, Radiology, Pathology and Surgery. 2017; 4(1): 1-3

Li Q, Ao X, Du Y, Li Y, Ou Y, Gong R, et al. Effects of aminoguanidine and vitamin C on collagen type IV in diabetic nephropathy rats. Endocrine. 2011; 39(3): 251-258.

Yanowsky-Escatell FG, Andrade-Sierra J, Pazarín-Villaseñor L, Santana-Arciniega C, Torres-Vázquez ED, Chávez-Iñiguez JS, et al. The Role of Dietary Antioxidants on Oxidative Stress in Diabetic Nephropathy. Iranian journal of kidney diseases. 2020; 14(2).

Pan HZ, Zhang L, Guo MY, Sui H, Li H, Wu WH, et al. The oxidative stress status in diabetes mellitus and diabetic nephropathy. Acta diabetologica. 2010; 47(1): 71-76.

Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J. Antioxidant defense system in diabetic kidney: a time course study. Life sciences. 1997; 60(9): 667-679.

Xie R, Zhang H, Wang XZ, Yang XZ, Wu SN, Wang HG, et al. The protective effect of betulinic acid (BA) diabetic nephropathy on streptozotocin (STZ)-induced diabetic rats. Food & function. ; 8(1): 299-306.

Ahmad A, Dempsey SK, Daneva Z, Azam M, Li N, Li PN, et al. Role of nitric oxide in the cardiovascular and renal systems. International journal of molecular sciences. 2018; 19(9): 2605.

Dellamea BS, Leitão CB, Friedman R, Canani LH. Nitric oxide system and diabetic nephropathy. Diabetology & Metabolic Syndrome. 2014; 6(1): 1-6.

Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. Journal of Ayurveda and integrative medicine. 2020; 11(1): 37-44.

Hussein J, El-Naggar ME, Latif YA, Medhat D, El Bana M, Refaat E, et al. Solvent-free and one-pot synthesis of silver and zinc oxide nanoparticles: activity toward cell membrane component and insulin signaling pathway in experimental diabetes. Colloids and Surfaces B: Biointerfaces. 2018; 170: 76-84.

Qiao J, Liu Y, Jiang Z, Yang Y, Liu W, Han B. Preparation and renoprotective effects of carboxymethyl chitosan oligosaccharide on adriamycin nephropathy. Carbohydrate polymers. 2018; 201: 347-356.

Downloads

Published

2021-09-30

How to Cite

Mahmoud, E. A. E. Q. ., Mohamed, A. S. ., Fahmy, S. R. ., Soliman, A. M. ., & Gaafar, K. . (2021). Silver/chitosan/ascorbic acid nanocomposites ameliorate diabetic nephropathy in the model of type 1 diabetes. GSC Biological and Pharmaceutical Sciences, 16(3), 091–102. https://doi.org/10.30574/gscbps.2021.16.3.0263

Issue

Section

Original Article