Medicinal Plants with neuroprotective effects

Authors

  • Ali Esmail Al-Snafi Dept. of Pharmacology, College of Medicine, University of Thi-Qar, Iraq.

DOI:

https://doi.org/10.30574/gscbps.2021.17.1.0319

Keywords:

Neuroprotective, Medicinal plants, CNS, Neurons

Abstract

Neuroprotection is the preservation of the structure and function of neurons from insults from cellular injuries caused by a variety of agents or neurodegenerative diseases. Medicinal plants possess neuroprotective effects via mechanisms that include inhibiting protein-based deposit accumulation, oxidative stress, and neuroinflammation, and correcting defects of neurotransmitters such as acetylcholine and dopamine [1-3]. The current review will highlight the neuroprotective effects of medicinal plants.

Metrics

Metrics Loading ...

References

Al-Snafi AE. Therapeutic properties of medicinal plants: a review of medicinal plants with central nervous effects (part 1). Int J of Pharmacology & Toxicology. 2015; 5(3): 177-192.

Al-Snafi AE. Medicinal plants with central nervous effects (part 2): plant based review. IOSR Journal of Pharmacy. 2016; 6(8): 52-75.

Al-Snafi AE,Talab TA, Majid WJ. Medicinal plants with central nervous activity - An overview (Part 1). IOSR Journal of pharmacy. 2019; 9(3): 52-102.

Khan A, Vaibhav K, Javed H. Neuroprotective effect of Bellis perennis and Hypericum perforatum on PC12 cells. Indian Journal of Research in Homoeopathy. 2011; 5(3): 27-35.

Al-Snafi AE. The Pharmacological importance of Bellis perennis - Areview. InternationalJournalof Phytotherapy. 2015; 5(2): 63-69.

Shivasharan BD, Nagakannan P, Thippeswamy BS, Veerapur VP. Protective effect of Calendula officinalis L. flowers against monosodium glutamate induced oxidative stress and excitotoxic brain damage in rats. Indian J Clin Biochem. 2013; 28(3): 292-298.

Al-Snafi AE. The chemical constituents and pharmacological effects of Calendula officinalis - A review. Indian Journal of Pharmaceutical Science & Research. 2015; 5(3): 172-185.

Shivasharan BD, Nagakannan P, Thippeswamy BS, Veerapur VP, Bansal P, Unnikrishnan MK. Protective effect of Calendula officinalis Linn. flowers against 3-nitropropionic acid induced experimental Huntington's disease in rats. Drug Chem Toxicol. 2013; 36(4): 466-473.

Yang Q, Yang ZF, Liu SB, Zhang XN, Hou Y, Li XQ, Wu YM, Wen AD, Zhao MG. Neuroprotective effects of hydroxysafflor yellow A against excitotoxic neuronal death partially through down-regulation of NR2B-containing NMDA receptors. Neurochem Res. 2010; 35(9): 353-1360.

Lin B. Polyphenols and neuroprotection against ischemia and neurodegeneration. Mini Rev Med Chem. 2011; 11(14): 1222-1238.

Zhu H, Wang Z, Ma C, Tian J, Fu F, Li C, Guo D, Roeder E, Liu K. Neuroprotective effects of hydroxysafflor yellow A: in vivo and in vitro studies. Planta Med. 2003; 69(5): 429-433.

Hiramatsu M, Takahashi T, Komatsu M, Kido T, Kasahara Y. Antioxidant and neuroprotective activities of Mogami-benibana (safflower, Carthamus tinctorius Linne). Neurochem Res. 2009; 34(4): 795-805.

Shan LQ, Ma S, Qiu XC, Zhou Y, Zhang Y, Zheng LH, Ren PC, Wang YC, Fan QY, Ma BA. Hydroxysafflor Yellow A protects spinal cords from ischemia/reperfusion injury in rabbits. BMC Neurosci. 2010; 11: 98.

Pan Y, Zheng DY, Liu SM, Meng Y, Xu HY, Zhang Q, Gong J, Xia ZL, Chen LB,Li HY. Hydroxysafflor yellow A attenuates lymphostatic encephalopathy-induced brain injury in rats. Phytother Res. 2012; 26(10): 1500-1506.

Zhu HB, Zhang L, Wang ZH, Tian JW, Fu FH, Liu K,Li CL. Therapeutic effects of hydroxysafflor yellow A on focal cerebral ischemic injury in rats and its primary mechanisms. J Asian Nat Prod Res 2005; 7(4): 607-613.

Luo J, Fang ZP, Zhou LM,Lai ST. Effects of Carthamus tinctorius injection on bcl-2, caspase-3 expression related to neurons apoptosis after local cerebral ischemia. Zhongguo Zhong Yao Za Zhi 2004; 29(10): 977-980.

Tian J, Li G, Liu Z,Fu F. Hydroxysafflor yellow A inhibits rat brain mitochondrial permeability transition pores by a free radical scavenging action. Pharmacology. 2008; 82(2): 121-126.

Al-Snafi AE. The chemical constituents andpharmacological importance of Carthamus tinctorius - An overview. Journal of Pharmaceutical Biology. 2015; 5(3): 143-166.

Shafeen S, Srinath RT, Arafath S, Nagarjuna S, Padmanabha RY. Evaluation of antianxiety and antidepressant activity of Cassia occidentalis leaves. Asian J Pharm Clin Res. 2012; 5(3): 47-50.

Al-Snafi AE. The therapeuticimportance of Cassia occidentalis - An overview. Indian Journal of Pharmaceutical Science & Research. 2015; 5(3): 158-171.

Singh N, Nath R, Mishra N. An experimental evaluation of anti-stress effects of Geriforte (an ayurvedic drug). Quarterly Journal of Crude Drug Research. 1978; 3: 125-132.

Vekaria RH, Patel MN, Bhalodiya PN, Patel V, Desai TR, Tirgar PR. Evaluation of neuroprotective effect ofCoriandrum sativum Linn. against ischemic - reperfusion insult in brain. International Journal of Phytopharmacology. 2012; 3(2): 186-193.

Al-Snafi AE. A review on chemical constituents andpharmacological activities ofCoriandrum sativum.IOSR Journal of Pharmacy. 2016; 6(7): 17-42.

Ghorbani A, Rakhshandeh H, Asadpour E, Sadeghnia HR. Effects of Coriandrum sativum extracts on glucose/serum deprivationinduced neuronal cell death. Avicenna Journal of Phytomedicine.2012; 2(1): 4-9.

Shati AA, Elsaid FG,Hafez EE. Biochemical and molecular aspects of aluminium chloride-induced neurotoxicity in mice and the protective role ofCrocus sativus L. extraction and honey syrup. Neuroscience. 2011; 175: 66-74.

Al-Snafi AE.The pharmacology of Crocus sativus- A review. IOSR Journal of Pharmacy. 2016; 6(6): 8-38.

Linardaki ZI, Orkoula MG, Kokkosis AG, Lamari FN, Margarity M. Investigationofthe neuroprotective action of saffron (Crocus sativus L.) in aluminum-exposed adultmice throughbehavioral and neurobiochemical assessment. Food Chem Toxicol. 2013; 52: 163-170.

Ghazavi A, Mosayebi G, Salehi H, Abtahi H. Effect of ethanol extract of saffron (Crocus sativus L.) on the inhibition of experimental autoimmune encephalomyelitis in C57bl/6 mice. Pak J Biol Sci.2009; 12(9): 690-695.

Mousavi SH, Tayarani NZ, Parsaee H. Protective effect of saffron extract and crocin on reactive oxygen species-mediated high glucose-induced toxicity in PC12 cells. Cell Mol Neurobiol. 2010; 30(2):185-191.

Moallem SA, Hariri AT, Mahmoudi M, Hosseinzadeh H. Effect of aqueous extract ofCrocus sativus L. (saffron) stigma against subacute effect of diazinon on specific biomarkers in rats. Toxicol Ind Health. 2014; 30(2): 141-146.

Saleem S, Ahmad M, Ahmad AS, Yousuf S, Ansari MA, Khan MB, Ishrat T, Islam F. Effect of saffron (Crocus sativus) on neurobehavioral and neurochemical changes in cerebral ischemia in rats. J Med Food. 2006; 9(2): 246-253.

Hosseinzadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty VS, Mohajeri SA. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother Res.2012; 26(3): 381-386.

Samarghandian S, Azimi-Nezhad M, Samini F. Ameliorative effect of saffron aqueous extract on hyperglycemia, hyperlipidemia, and oxidative stress on diabetic encephalopathy in streptozotocin induced experimental diabetes mellitus. Biomed Res Int. 2014.

Lee CH, Hwang DS, Kim HG, Oh H, Park H, Cho JH, Lee JM, Jang JB, Lee KS, Oh MS. Protective effect ofCyperi rhizoma against 6-hydroxydopamine-induced neuronal damage. J Med Food. 2010; 13(3): 564-571.

Al-Snafi AE.A review on Cyperus rotundus A potential medicinal plant. IOSR Journal of Pharmacy. 2016; 6(7):32-48.

Dabaghian FH, Hashemi M, Entezari M, Movassaghi S, Goushegir SA, Kalantari S, Movafagh A, Sharifi ZN. Effect ofCyperus rotundus on ischemia-induced brain damageandmemory dysfunction in rats. Iran J Basic Med Sci. 2015; 18(2): 199-204.

Sunil AG, Kesavanarayanan KS, Kalaivani P, Sathiya S, Ranju V, Priya RJ, Pramila B, Paul FD, Venkhatesh J,Babu CS. Totaloligomeric flavonoidsofCyperusrotundusameliorates neurological deficits, excitotoxicity and behavioral alterations induced by cerebral ischemic-reperfusion injury in rats. Brain Res Bull.2011; 84(6): 394-405.

Jebasingh D, Devavaram Jackson D, Venkataraman S, Adeghate E, Starling EmeraldB.Theprotective effects ofCyperus rotundus on behavior and cognitive functioninarat model of hypoxia injury. Pharm Biol. 2014; 52(12): 1558-1569.

Hemanth Kumar K, Tamatam A, Pal A, Khanum F. Neuroprotective effectsofCyperusrotundus on SIN-1 induced nitric oxide generation and protein nitration: ameliorative effect against apoptosis mediated neuronal cell damage. Neurotoxicology.2013; 34: 150-159.

Swaroop TVSS, Handral M, Mitul P. Neuroprotection evaluation of Dalbergia sissoo Roxb. leaves against cerebral ischemia/ reperfusion (I/R) induced oxidative stress in rats.IAJPR. 2013; 3(5): 3689-3701.

Al-Snafi AE. Chemical constituents and pharmacological effects of Dalbergia sissoo - A review. IOSR Journal of Pharmacy. 2017; 7(2): 59-71.

Swaroop TVSS, Banerjee S, Handral M. Neuroprotective evaluation of leaf extract of Dalbergia sissoo in 3-Nitropropionic acid induced neurotoxicity in rats. Int J of Pharmac Sci and Drug Res. 2014; 6(1): 41-47.

Paun G, Neagu E, Albu C, Radu GL. Inhibitory potential of some Romanian medicinal plants against enzymes linked to neurodegenerative diseases and their antioxidant activity. Pharmacogn Mag. 2015; 11(Suppl 1): S110-116.

Al-Snafi AE. Constituents and pharmacology of Geum urbanum- A review. IOSR Journal of Pharmacy. 2019; 9(5): 28-33.

Sengupta T, Vinayagam J, Nagashayana N. Antiparkinsonian effects of aqueous methanolic extract of Hyoscyamus niger seeds result from its monoamine oxidase inhibitory and hydroxyl radical scavenging potency. Neurochem Res. 2011; 36: 177-186.

Al-SnafiAE.Therapeutic importance ofHyoscyamus species grown in Iraq (Hyoscyamus albus, HyoscyamusnigerandHyoscyamus reticulates)- A review.IOSR Journal ofPharmacy. 2018; 8(6): 18-32.

Khatri DK, Juvekar AR. Propensity of Hyoscyamus niger seeds methanolic extract to allay stereotaxically rotenone-induced Parkinson’s disease symptoms in rats. Orient Pharm Exp Med. 2015; 15: 387–388.

Shabani M, Nazeri M, Parsania S, Razavinasab M, Zangiabadi N, Esmaeilpour K, AbareghiF. Walnut consumption protects rats against cisplatin-induced neurotoxicity.Neurotoxicology. 2012; 33(5): 1314-1321.

Al-SnafiAE.Chemical constituents, nutritional, pharmacological and therapeutic importance of Juglans regia- A review. IOSR Journal of Pharmacy. 2018; 8(11): 1-21.

Essa MM, Subash S, Dhanalakshmi C, Manivasagam T, Al-Adawi S, Guillemin GJ, Justin Thenmozhi A. Dietary Supplementation of Walnut Partially Reverses 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Induced Neurodegeneration in a Mouse Model of Parkinson's Disease. Neurochem Res. 2015; 40(6): 1283-1293.

Fisher DR, Poulose SM, Bielinski DF, Shukitt-Hale B. Serum metabolites from walnut-fed aged rats attenuate stress- induced neurotoxicity in BV-2microglialcells.NutrNeurosci. 2017; 20(2): 103-109.

Bhokare KH, Upaganlawar AB. Neuroprotective effects of Lagerstroemia speciosa L. extract (Banaba leaf extract) in streptozotocine induced painful diabetic neuropathy in laboratory rats. Pharmacologia. 2016; 7(1): 9-15.

Al-Snafi AE. Medicinal value of Lagerstroemia speciosa: An updatedreview. International Journal of Current Pharmaceutical Research. 2019; 11(5): 18-26.

Wang Z, Liu T, Gan L,Wang T, Yuan X, Zhang B, Chen H, Zheng Q. Shikonin protects mouse brain against cerebral ischemia/reperfusion injury through its antioxidant activity. Eur J Pharmacol. 2010; 643: 211-217.

Nam KN, Son MS, Park JH, Lee EH. Shikonins attenuate microglial inflammatory responses by inhibition of ERK, Akt, and NF-κB: neuroprotective implications. Neuropharmacology. 2008; 55: 819-825.

Al-Snafi AE. Chemical constituents and pharmacological effects of Lithospermum officinale. IOSR Journal ofPharmacy. 2019; 9(8): 12-21.

Tang L, Bao S, Du Y, Jiang Z, Wuliji AO, Ren X, Zhang C, Chu H, Kong L, Ma H. Antioxidant effects of Lycium barbarum polysaccharides on photoreceptor degeneration in the light-exposed mouse retina. Biomed Pharmacother. 2018; 103: 829-837.

Zhao P, Ma NT, Chang RY, Li YX, Hao YJ, Yang WL, Zheng J, Niu Y, Sun T, Yu JQ. Mechanism of Lycium barbarum polysaccharides on primary cultured rat hippocampal neurons. Cell Tissue Res. 2017; 369(3): 455-465.

Ho YS, Yu MS, Lai CS, So KF, Yuen WH, Chang RC. Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on beta-amyloid peptide neurotoxicity. Brain Res. 2007; 1158: 123-34.

Yu MS, Lai CS, Ho YS, Zee SY, So KF, Yuen WH, Chang RC.Characterization of the effects of anti-aging medicine Fructus lycii on beta-amyloid peptide neurotoxicity. Int J Mol Med. 2007; 20(2): 261-268.

Hoa YS, Yua MS, Yanga XF, Soa KF, Yuend WH, Changa RCC. Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. Journal of Alzheimer’s Disease. 2010; 19: 813–827.

Hu X, Qu Y, Chu Q, Li W, He J. Investigation of the neuroprotective effects of Lycium barbarum water extract in apoptotic cells and Alzheimer's disease mice. Mol Med Rep. 2018; 17(3): 3599-3606.

Lam CS, Tipoe GL, So KF, Fung ML. Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model 529 of obstructive sleep apnea. Plos One. 2015.

Simonyan KV, Avetisyan LG, Chavushyan VA. Goji fruit (Lycium barbarum) protects sciatic nerve function against crush injury in a model of diabetic stress. Pathophysiology. 2016; 23: 69-179.

Gao K, Liu M, Cao J, Yao M, Lu Y, Li J, Zhu X, Yang Z, Wen A. Protective effects of Lycium barbarum polysaccharide on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway. Molecules. 2014; 20(1): 293-308.

Yu MS, Leung SK, Lai SW, Che CM, Zee SY, So KF, Yuen WH, Chang RC. Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against beta-amyloid peptide neurotoxicity. Exp Gerontol. 2005; 40(8-9): 716-727.

Meng J, Lv Z, Li X, Sun C, Jiang Z, Zhang W, Chen C. Lycium extracts protect against β amyloid-induced pathological behaviors through UPRmt in transgenic Caenorhabditis elegans. J Aging Age Relat Dis. 2017; 1(1): 1001- 1008.

Wang HB, Li YX, Hao YJ, Wang TF, Lei Z, Wu Y, Zhao QP, Ang H, Ma L, Liu J, Zhao CJ, Jiang YX, Wang YR, Dai XY, Zhang WN, Sun T, Yu JQ.Neuroprotective effects of LBP on brain ischemic reperfusion neurodegeneration. Eur Rev Med Pharmacol Sci. 2013; 17(20): 2760-2765.

Wang T, Li Y, Wang Y, Zhou R, Ma L, Hao Y, Jin S, Du J, Zhao C, Sun T, Yu J. Lycium barbarum polysaccharide prevents focal cerebral ischemic injury by inhibiting neuronal apoptosis in mice. PLoS One. 2014; 9(3): e90780.

Liu WJ, Jiang HF, Rehman FU, Zhang JW, Chang Y, Jing L, Zhang JZ. Lycium barbarum polysaccharides decrease hyperglycemia-aggravated ischemic brain injury through maintaining mitochondrial fission and fusion balance. Int J Biol Sci. 2017; 13(7): 901-910.

Al Omairi NE, Radwan OK, Alzahrani YA, Kassab RB. Neuroprotective efficiency of Mangifera indica leaves extract on cadmium-induced cortical damage in rats. Metab Brain Dis. 2018; 33(4): 1121-1130.

Al-Snafi AE, Ibraheemi ZAM, Talab TA. A review on components and pharmacology of Mangifera indica. Int J Pharmaceutical Research. 2021; 13(2): 3043- 3066.

Moshfegh A, Setorki M. Neuroprotective effect of Matricaria chamomilla extract on motor dysfunction induced by transient global cerebral ischemia and reperfusion in rat. Zahedan J Res Med Sci. 2017; 19(9): e10927.

Bigagli E, Cinc L, D'Ambrosio M, Luceri C. Pharmacological activities of an eye drop containing Matricaria chamomilla and Euphrasia officinalis extracts in UVB- induced oxidative stress and inflammation of human corneal cells. Journal of Photochemistry & Photobiology, B: Biology. 2017; 173: 618-625.

Bora KS, Sharma A. Evaluation of antioxidant and cerebroprotective effect of Medicago sativa Linn against ischemia and reperfusion insult. Hindawi Publishing Corporation Evidence- Based Complementary and Alternative Medicine. 2011.

Liu XG, Lv MC, Huang MY, Sun YQ, Gao PY, Li DQ. A network pharmacology study on the triterpene saponins from Medicago sativa L for the treatment of neurodegenerative diseases. J Food Biochem. 2019; 43(8): e12955.

Al-Snafi AE, Khadem HS, Al-Saedy HA, Alqahtani AM, El-Saber Batiha G, Jafari-Sales Abolfazl.A review on Medicago sativa: A potential medicinal plant. International Journal of Biological and Pharmaceutical Sciences Archive. 2021; 1(2): 22-33.

Zhao GC, Yuan YL, Chai FR, Ji FJ. Effect of Melilotus officinalis extract on the apoptosis of brain tissues by altering cerebral thrombosis and inflammatory mediators in acute cerebral ischemia. Biomed Pharmacother. 2017; 89: 1346-1352.

Al-Snafi AE. Chemical constituents and pharmacological effects of Melilotus Officinalis- A review. IOSR Journal of Pharmacy. 2020; 10(1): 26-36.

Hassanzadeh G, Pasbakhsh P, Akbari M. Neuroprotective properties of Melissa officinalis L. extractagainst ecstasyinduced neurotoxicity. Cell J. 2011; 13(1): 25-30.

Martins EN, Pessano NT, Leal L. Protective effect of Melissa officinalis aqueous extract against Mn-induced oxidative stress in chronically exposed mice. Brain Res Bull. 2012; 87(1): 74-79.

López V, Martín S, Gómez-Serranillos MP. Neuroprotective and neurological properties of Melissa officinalis. Neurochem Res. 2009; 34: 1955-1961.

Yoo DY, Choi JH, Kim W. Effects of Melissa officinalis L. (lemon balm) extract on neurogenesis associated with serum corticosterone and GABA in the mouse dentate gyrus. Neurochem Res. 2011; 36(2): 250-257.

Zouari-Bouassida K, Trigui M, Makni S, Jlaiel L, Tounsi S. Seasonal variation in essential oils composition and the biological and pharmaceutical protective effects of Mentha longifolia leaves grown in Tunisia. Biomed Res Int. 2018; 7856517.

López V, Martín S, Gómez-Serranillos MP, Carretero ME, Jäger AK, Calvo MI. Neuroprotective and neurochemical properties of mint extracts. Phytother Res. 2010; 24(6): 869-874.

Fathi F, Oryan S, Rafieian-KopaeI M, Eidi A. Neuroprotective effect on pretreatment with Mentha longifolia L. extracts on brain ischemia in the rat stroke model. Arch Biol Sci, Belgrade. 2015; 67(4): 1151-1163.

Gong J, Sun F, Li Y, Zhou X, Duan Z, Duan F, Zhao L, Chen H, Qi S, Shen J. Momordica charantia polysaccharides could protect against cerebral ischemia/ reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway. Neuropharmacology. 2015; 91: 123-134.

Duan ZZ, Zhou XL, Li YH, Zhang F, Li FY, Su-Hua Q. Protection of Momordica charantia polysaccharide against intracerebral hemorrhage-induced brain injury through JNK3 signaling pathway. J Recept Signal Transduct Res. 2015; 35(6): 523-529.

Deng Z, Yuan C, Yang J. Behavioral defects induced by chronic social defeat stress are protected by Momordica charantia polysaccharides via attenuation of JNK3/PI3K/AKT neuroinflammatory pathway. Ann Transl Med. 2019; 7(1): 6.

Dalmagro AP, Camargo A, Rodrigue ALS, Zeni ALB. Involvement of PI3K/Akt/GSK-3β signaling pathway in the antidepressant-like and neuroprotective effects of Morus nigra and its major phenolic, syringic acid. Chemico-Biological Interactions. 2019.

Dalmagro AP, Camargo A, Pedron NB, Garcia SAM, Zeni ALB. Morus nigra leaves extract revokes the depressive-like behavior, oxidative stress, and hippocampal damage induced by corticosterone: a pivotal role of the phenolic syringic acid. Behav Pharmacol. 2020.

Youness ER, Mohamed NA, Ashour MN, Aly HF, Ibrahim AMM. Neuroprotective effect of Myrtus communis and Zingbar officinale in LPS induced neurotoxicity in brain rats’ model. Der Pharma Chemica. 2016; 8(19): 474-482.

Dunn DE, He DN, Yang P, Johansen M, Newman RA, Lo DC. In vitro and in vivo neuroprotective activity of the cardiac glycoside oleandrin from Nerium oleander in brain slice-based stroke models. J Neurochem. 2011; 119(4): 805-814.

Al-Snafi AE.Bioactive ingredients and pharmacological effects of Nerium oleander. IOSR Journal of Pharmacy. 2020; 10(9): 19-32.

Kanter M, Coskun O, Kalayci M, Buyukbas S, Cagavi F. Neuroprotective effects of Nigella sativa on experimental spinal cord injury in rats. Hum Exp Toxicol. 2006; 25(3): 127-133.

Kanter M. Nigella sativa and derived thymoquinone prevents hippocampal neurodegeneration after chronic toluene exposure in rats. Neurochem Res. 2008; 33: 579-588.

Ikram-Ullah, Najeeb-Ullah, Naseer MI, Le HY, Myeong OK. Neuroprotection with metformin and thymoquinone against ethanolinduced apoptotic neuro-degeneration in prenatal rat cortical neurons. BMC Neuroscience. 2012; 13:11.

Akhtar M, Maikiyo AM, Khanam R, Mujeeb M, Aqil M, et al. Ameliorating effects of two extracts of Nigella sativa in middle cerebral artery occluded rat. J Pharm Bioallied Sci. 2012; 4: 70–75.

Akhtar M, Maikiyo AM, Najmi AK, Khanam R, Mujeeb M. Neuroprotective effects of chloroform and petroleum ether extracts of Nigella sativa seeds in stroke model of rat. J Pharm Bioallied Sci. 2013; 5: 119-125.

Mohamadin AM, Sheikh B, Abdel-Aal AA, Elberry AA, Al- Abbasie FA. Protective effects of Nigella sativa oil on propoxurinduced toxicityand oxidative stress in rat brain regions. Pesticide Biochemistry and Physiology. 2010; 98: 128-134.

Hobbenaghi R, Javanbakht J, Sadeghzadeh Sh, Kheradmand D, Abdi FS, Jaberi MH, Mohammadiyan MR, Khadivar F, Mollaei Y. Neuroprotective effects of Nigella sativa extract on cell death in hippocampal neurons following experimental global cerebral ischemia-reperfusion injury in rats. J Neurol Sci. 2014; 337(1-2): 74-79.

Singh V, Krishan P, Shri R. Improvement of memory and neurological deficit with Ocimum basilicum L. extract after ischemia reperfusion induced cerebral injury in mice. Metab Brain Dis. 2018; 33(4): 1111-1120.

Al-Snafi AE. Chemical constituents and pharmacological effects of Ocimum basilicum- A review. International Journal of Pharmaceutical Research. 2021; 13(2): 2997-3013.

Aruna K, Rajeswari PDR, Sankar SR. The effect of Oxalis corniculata extract against the behavioral changes induced by 1- methyl- 4-phenyl-1,2,3,6-tetrahydro pyridine (MPTP) in mice. Journal of Applied Pharmaceutical Science. 2017; 7(03): 148-153.

Downloads

Published

2021-11-26

How to Cite

Al-Snafi, A. E. . (2021). Medicinal Plants with neuroprotective effects. GSC Biological and Pharmaceutical Sciences, 17(1), 213–231. https://doi.org/10.30574/gscbps.2021.17.1.0319

Issue

Section

Review Article