Effects (in vivo) of the nutritional potential of snail Limicolaria flammea (Müller) meat on wistar rats

Authors

  • Bogui Jacques Anicet Envin Department of Food Science and Technology, Laboratory of Biocatalysis and Bioprocessing, University Nangui Abrogoua.
  • Elvis Serge Gbocho Ekissi Department of Biochemistry, University Felix Houphouët-Boigny.
  • Tehi Bernard Sea Department of Food Science and Technology, Laboratory of Biocatalysis and Bioprocessing, University Nangui Abrogoua.
  • N’djoman Paterne Rougbo Department of Food Science and Technology, Laboratory of Biocatalysis and Bioprocessing, University Nangui Abrogoua.
  • Lucien Patrice Kouamé Department of Biochemistry, University Felix Houphouët-Boigny.

DOI:

https://doi.org/10.30574/gscbps.2020.11.2.0108

Keywords:

Diets, In vivo, Limicolaria flammea, Wistar rats, Zoo technical, Biochemical parameters.

Abstract

Development of new animal protein sources contributes to the fight against protein deficiencies in diets of populations in sub-Saharan Africa. This study was investigated to assess the impact of snail flesh (Limicolaria flammea) diet on   biochemical and zootechnical parameters of young wistar rats. Thus, three diets (RTC, ESC and RPP) were made and submitted to these rats for 15 days. The biochemical analysis of snail flesh (Limicolaria flammea) powder having served as a protein source (46.65±0.05%) is also rich in ash (6.23±0.01%), calcium (1654.54±0.06 mg/100g), potassium (1324.54±4.18 mg/100g) and sodium (668.69±1.13 mg/100g). The results showed that the constituted diets had a significant impact on the rats weight compared to the control diet (RTC) with an average daily variation of +2.08 g/J (RTC); 1.68 g/J (ESC) and - 0.69 g/J (RPP) with respective final weights at the end of the experiment of 68.12±1g; 68.12±1g and 45.3±1g. Furthermore, the ESC diet had no negative impact on the weight of vital organs. The organs weights such as the heart (0.52±0.04g), liver (3.19±0.96g), spleen (0.28±0.03g), kidneys (0.80±0.04g) and abdominal fat (0.85±0.08g) of fed rats on the diet (ESC) showed no significant difference (p <0.05) with those of rats fed the control diet (BTI).

Metrics

Metrics Loading ...

References

Ajayi SS, Tewe OO, Mariarty C and Awesu MO. (1978). Observatinos on the biological and nutritive value of the African giant snail (Archachatina marginata). East African Wildlife Journal, 16, 85–95.

Adeyeye EI. (1996). Waste Yield, Proximate and Mineral Composition of three different types of land snails found in Nigeria. International Journal of Food Science and Nutrition, 47 (2), 111–116.

Akintomide IA. (2004). Tropical snail farming. Oak Ventures Publishers, Lagos, Nigeria, 5–6.

Beckett WH. (1964). Akokoaso –A Survey of a Gold Coast Village: Monograph of snails Anthropology, 10 London School of Economics, 9–14.

Cobbinah JR. (1993). Snail farming in West Africa; A Practical Guide, Technical Centre for Agricultural and Rural Co-operation (CTA), Sayee Publishing Company, United Kingdom, 18 – 20.

Ebenebe CI. (2000). Mini-livestock production in Nigeria. The present and the future. Proc., 5th Ann., Conf., ASAN, Port Harcourt, Nigeria, 19-22.

Akinnusi O. (1998). A practical approach to backyard snail farming, Nig. J. Animal Prod, 25(2), 193 – 197.

Awah AA, Lalabe BC, Nasiru I and Omo-Erigbe P. (2009). Comparative Studies on the Composition and Purchase Costs of some edible land snails in Nigeria, Tropicultura, 27(1), 54-57.

Raut SK and Barker MG. (2002). Achatina fulica Bowdich and other Achatinidae as pests in tropical agriculture. In: Barker, G. M. (ed.), Molluscs as Crop Pests. CABI Publishing, Wallingford, 55–114.

Tan SK and Clements RG. (2011). Limicolaria flammea (Müller, 1774), another potentially invasive African land snail in tropical Asia. Trop. Conserv. Sci, 4(1), 97-102.

Cirlan AF and Sindilar E. (2009). Observations regarding the physical and chemical composition of the meat from the Helix pomatia snail. Journal Lucrari stiintifice–Medicina Veterinara, 52(11), 860–862.

Okonkwo TM and Anyaene LU. (2009). Meat yield and the effects of curing on the characteristics of snail meat. Journal of Tropical Agriculture, Food, Environment and Extension, 8, 66–73.

Ligaszewski M, Lysak A and SurÓwka K. (2005). Chemical composition of the meat of Helix pomatia L. snails from the natural population and the derived breeding population. Roczniki Naukowe Zootechniki, 32, 33–45.

FAO. (2015). La situation des marchés des produits agricoles 2015-16. Commerce et sécurité alimentaire: trouver un meilleur équilibre entre les priorités nationales et le bien commun Rome.

FAO. (2017a). The future of food and agriculture–trends and challenges. Rome.

Okon B, Ibom LA, Ina-Ibor OB and Owai PU. (2016). Nutritional evaluation of giant african land snail Archachatina marginata var. saturalis) fed diet containing full fat rubber as a replacement for soybean. Nigerian Journal of Agriculture, Food and Environment, 12 (2), 1-8.

Daina I, Ale Ksandrs J, Vita S and Vita S. (2014). Evaluation of nutrion value of roman snail’s (Helix pomata) meat obtained in Latvia .FOODBALT.

Sodjinou E, Biaou G and Codjia J-C. (2002). Caractérisation du marché des escargots géants africains (achatines) dans les départements de l’Atlantique et du Littoral au Sud-Bénin. Tropicultura, 20(2), 83-88.

Friday E, Uboh I, Williams ON and Essien C. (2014). Effect of processing on the proximate and Mineral Composition of Archachatina marginata and Achatina achatina. Food and Public Health, 4(1), 10-14.

Kouadio EJP, Konan HK, Brou KS, Dabonné S, Dué AE and Kouamé LP. (2015). Etudes de quelques paramètres de croissance et de valeur nutritive des variétés d’escargot Archachatina marginata (Swainson) élevées en milieu naturel. Tropicultura, 33 (1), 38-45.

AOAC. (1990). Official methods of analysis 15 edition. Washington DC, 222-245.

BIPEA. (1976). Bureau Interprofessionnel d’Etudes Analytiques. Recueil de méthodes d’analyse des communautés européennes, 110.

FAO. (1994). 4. Pulses and derived products, In Definition and classification of commodities. Rome: FAO.

James CS. (1995). Analytical Chemistry of Foods, Blackie Academic and Professional, Glasgow, U.K, 64 – 65.

Adrian J, Rabache M and Fragne R. (1991). Techniques d’analyse nutritionnelle. In Principes de techniques d’analyse. Ed: Lavoisier TEC & DOC. Paris, 451-478.

Ademolu KO, Idowu AB, Mafiana CF and Osinowo OA. (2004). Performance, proximate and mineral analyses of African giant land snail (Archachatina marginata) fed different nitrogen sources. Afr J Biotech, 3(8), 412–417.

Özogul Y, Özogul F and Olgunoglu IA. (2005). Fatty acid profile and mineral content of the wild snail (Helix pomatia) from the region of the South of the Turkey, European Food Research and Technology, 221, 547-549.

Milinsk MC, Padre R, Hayashi C, De Oliveira CC, Visentainer JV, de Souza NE and Matsushita M. (2006). Effect of feed protein and lipid contents on fatty acid pro-file of snail (Helix aspersa maxima) meat. Journal of Food Composition and Analysis, 19, 212-216.

Fagbuaro O, Oso JA, Edward JB and Ogunleye RF. (2006). Nutritional status of four species of giant land snails in Nigeria. J Zhejiang Univ. Sci. B, 7(9), 686–689.

Funmilayo SM. (2008). Preliminary investigation of the growth performance of Giant Land Snail (Archachatina marginata) fed with selected household wastes. African Journal of Agricultural Research, 3(9), 647–649.

Uboh FE, Ebong PE and Mbi E. (2010). Cultural discrimination in the Consumption of black snail (Archatina marginata) and white snail (Achatina achatina); any scientific justification? International Research Journal of Microbiology, 1(1), 013-017.

Çagiltay F, Erkan N, Tosun D and Selçuk A. (2011). Amino acid, fatty acid, vitamin and mineral contents of the edible garden snail (Helix aspersa). Journal of FisheriesSciences.com, 5(4), 354-363.

Aganga AA, Aganga AO, Thema T and Obocheleng KO. (2003). Carcass analysis and meat composition of the Donkey. Pakistan J. Nutri, 2 (3), 138–147.

Envin BJA, Ekissi ESG, Sea TB and Kouame LP. (2018). Biochemical and nutritional composition of garden snail (Limicolaria flammea) flesh consumed in Côte d’Ivoire. Journal of Basic and Applied Research, 4(4), 63-70.

Silva HJ, Marinho SMO, Silva AETM, Albuquerque CG, Moraes SRA and Manhães De Castro R. (2005). Protocol of meensuration to avaliation of indicators of somatic development of Wistar rats. International Journal of Morphology, 23(3), 227-230.

Bouafou K, Konan BA, Meite A, Kouame G and Kati-Coulibally S. (2011). Substitution de la farine de poisson par la farine d’asticots séchés dans le régime du rat en croissance: risques pathologiques? .Journal of Applied Biosciences, 48, 3279–3283.

Dally T, Meite A, Kouame KG, Bouafou KGM and Kati–Coulibali S. (2010). Efficacité nutritionnelle de trois mets Ivoiriens: cabatoh à la sauce dah au nord; foutou igname à la sauce gouagouassou au centre; riz cuit à la sauce graine à l'ouest. Journal of Applied Biosciences, 33, 2084–2090.

Kouadio NJ, Koua A-YG, Cissé M, Kra KAS and Niamké LS. (2016). Nutritional status of baked dockounou formulated with senescent plantain and six sell flours. International Journal of food and nutritional sciences, 4(5), 17-26.

Meite A, Dally T, Ouattara H, Bouafou MGK, Kouame GK and Kati-Coulibaly S. (2017). Blood Biochemical Parameters and Biometry of organs In Rats Fed With breads Fortified With the Flour of Non-Delipidated Seeds of Citrullus lanatus (Cucurbitaceae). International Journal of Innovation and Applied Studies, 20(2), 561-567.

Calder CC, Costa-Rosa LFBP and Curi, R. (1995). Effects of feedings lipids of different fatty acid compositions upon rat lymphocyte proliferation- Life Sci, 56(6), 455-463.

Moriyama M, Durham AD and Moriyama H. (2008). Multiple roles of Notch signaling in the regulation of epidermal development. Dev Cell, 14, 594–604.

Friedman M. (1996). Nutritional Value of Proteins from Different Food Sources: A Review. J. Agric. Food Chem, 44, 6-29.

FAO/WHO. (1991). Protein quality evaluation. (Report of Joint FAO/WHO Expert Consultation, FAO Food and Nutrition Paper 51). FAO/WHO, Rome, Italy, 466.

Rougbo NP, Kouadio NJ, Sea TB and Kouamé LP. (2018). Nutritional assessment of precooked flour formulated from corn (Zea mays), soybean (Glycine max) and groundnut (Arachis hypogaea) flours consumed in Côte d’Ivoire. European Journal of Food Science and Technology, 6(4), 1–10.

Downloads

Published

2020-05-30

How to Cite

Envin , B. J. A., Ekissi , E. S. G., Sea , T. B., Rougbo, . N. P., & Kouamé , L. P. (2020). Effects (in vivo) of the nutritional potential of snail Limicolaria flammea (Müller) meat on wistar rats. GSC Biological and Pharmaceutical Sciences, 11(2), 071–079. https://doi.org/10.30574/gscbps.2020.11.2.0108

Issue

Section

Original Article

Most read articles by the same author(s)