Application of polymer in biomedical implication
DOI:
https://doi.org/10.30574/gscbps.2021.14.2.0038Keywords:
Polymer, Hydrophobicity, Antioxidant, Biomedical applications, Tissue/Born regenerationAbstract
Polymers are serving the mankind in various ways since long. Over the previous number of years, these polymers have found great demand in various domains. These materials are intensively studied over the years for a various range of applications Polymeric materials have found notable applications within the sphere of biomedical. This might ensue to their useful properties, such as: easy processing, lightweight and suppleness, high strength to weight, availability and recyclability. Polymeric materials also are able to alter their chemical or physical properties upon exposure to external stimuli. Thanks to these properties, they're widely applied for biomedical applications like drug delivery, tissue engineering scaffolds, wound dressings, and antibacterial coatings.
Metrics
References
Williams CK, Hillmyer MA. Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polymer reviews. 2008; 48(1): 1-10.
Miculescu M, Thakur VK, Miculescu F, Voicu SI. Graphene‐based polymer nanocomposite membranes: a review. Polymers for Advanced Technologies. 2016; 27(7): 844-859.
Thakur VK, Ding G, Ma J, Lee PS, Lu X. Hybrid materials and polymer electrolytes for electrochromic device applications.Advanced materials. 2012; 24(30): 4071-4096.
Thakur VK, Kessler MR. Self-healing polymer nanocomposite materials: A review. Polymer. 2015; 69: 369-383.
Thakur VK, Kessler MR. Synthesis and characterization of AN-g-SOY for sustainable polymer composites.ACS Sustainable Chemistry & Engineering. 2014; 2(10): 2454-2460.
Damodaran VB, Bhatnagar D, Murthy NS. Biomedical Polymers: Processing. In Biomedical Polymers. 2016; 55-71).
Morganti P, Febo P, Cardillo M, Donnarumma G, Baroni A. Chitin nanofibril and nanolignin: Natural polymers of biomedical interest. J. Clin. Cosmet.Dermatol. 2017; 1(1).
D’Arcy R, Tirelli N. Fishing for fire: strategies for biological targeting and criteria for material design in anti-inflammatory therapies.Polym. Adv. Technol. 2014; 25: 478–498.
Aguilar MR, San Román J. Introduction to smart polymers and their applications.In Smart polymers and their applications. 2017; 1-11.
Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, MacielFilho R. Poly-lactic acid synthesis for application in biomedical devices—A review.Biotechnology advances. 2012; 30(1): 321-328.
Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices.Biomaterials. 2000; 21(23): 2335-2346.
Wei M, Gao Y, Li X, Serpe MJ. Stimuli-responsive polymers and their applications.Polymer Chemistry. 2017; 8(1): 127-143.
Klein J. Polymers in living systems: from biological lubrication to tissue engineering and biomedical devices. Polymers for Advanced Technologies. 2012; 23(4): 729-735.
Ibrahim I, Sadiku E, Jamiru T, Hamam A, Kupolati WK. Applications of polymers in the biomedical field.Curr Trends Biomed EngBiosci. 2017; 4: 9-11.
Epple M, Ganesan K, Heumann R, Klesing J, Kovtun A, Neumann S, Sokolova V. Application of calcium phosphate nanoparticles in biomedicine.Journal of Materials Chemistry. 2010; 20(1): 18-23.
Zare Y, Shabani I. Polymer/metal nanocomposites for biomedical applications. Mater SciEng C Mater BiolAppl 2016; 60: 195-203.
Chanda M. Introduction to polymer science and chemistry: a problem-solving approach. CRC Press. 2006.
Akita H, Hattori T. Studies on molecular composite. I. Processing of molecular composites using a precursor polymer for poly (p‐phenylenebenzobisthiazole). Journal ofPolymer Science Part B: Polymer Physics. 1999; 37(3): 189-197.
Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I. Experimental trends in polymer nanocomposites—a review.Materials science and engineering: A. 2005; 393(1-2): 1-11.
Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Engng. 2000; 28: 1–63.
Liu J, Boo WJ, Clearfield A, Sue HJ. Intercalation and exfoliation: a review on morphology of polymer nanocomposites reinforced by inorganic layer structures. Materials and Manufacturing Processes. 2006; 21(2): 143-151.
Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in polymer science. 2003; 28(11): 1539-1641.
DR Paul, LM Robeson. Polymer nanotechnology :nanocomposites, Polymer. 2008; 49(15): 3187–3204.
Tan B, Thomas NL. A review of the water barrier properties of polymer/clay and polymer/graphenenanocomposites.Journal ofMembrane Science. 2016; 514: 595-612.
Bassas-Galia M, Follonier S, Pusnik M, Zinn M. 2-Natural polymers: A source of inspiration, Bioresorbable Polymers for Biomedical Applications. Perale G Hilborn J Eds. 2016; 31-64.
Mao C, Liang C, Luo W, Bao J, Shen J, et al. Preparation of lotusleaf-like polystyrene micro-and nanostructure films and its blood compatibility. Journal ofMaterials Chemistry. 2019; 19(47): 9025-9029.
Thakur VK, Kessler MR. Self-healing polymer nanocomposite materials: A review. Polymer. 2015; 69: 369-383.
Deka H, Karak N, Kalita RD, Buragohain AK. Bio-based thermostable, biodegradable and biocompatible hyperbranched polyurethane/Ag nanocomposites with antimicrobial activity. Polymer Degradation and Stability. 2010; 95: 1509-1517.
Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: Cell wall context, biomedical properties and key research challenges. Carbohydrate polymers. 2017; 175: 395-408.
Dore CM, Alves MG, Will LS, Costa TG, Sabry DA, de Souza Rego LA et al. A sulfated polysaccharide, fucans, isolated from brown algae Sargassumvulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects.Carbohydrate Polymers. 2013; 91(1): 467-475.
Pomin VH. Sulfated glycans in inflammation.European Journal of Medicinal Chemistry. 2015; 92: 353-369.
Cho M, Lee DJ, Kim JK, You S. Molecular characterization and immunomodulatory activity of sulfated fucans from Agarumcribosum.Carbohydrate Polymers. 2014; 113: 507-514.
Choi EM, Kim AJ, Kim YO, Hwang JK. Immunomodulating activity of arabinogalactan and fucoidan in vitro.Journal of Medicinal Food. 2015; 8(4): 446-453.
Ferreira SS, Passos CP, Madureira P, Vilanova M, Coimbra MA. Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydrate polymers. 2015; 132: 378-396.
Saheb DN, Jog JP. Natural fiber polymer composites: a review. Advances in Polymer Technology: Journal of the Polymer Processing Institute. 1999; 18(4): 351-363.
Matabola KP, De Vries AR, Moolman FS, Luyt AS. Single polymer composites: a review. Journal of Materials Science. 2009; 44(23): 6213-6222.
Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O. Synthesis and properties of nylon-6/clay hybrids. In: Schaefer DW, Mark JE, editors. Polymer based molecular composites. MRS Symposium Proceedings, Pittsburgh. 1990; 171: 45–50.
Biswas M, Sinha Ray S. Recent progress in synthesis and evaluation of polymer–montmorillonitenanocomposites.AdvPolymSci. 2001; 155: 167–221.
Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in polymer science. 2003; 28(11): 1539-1641.
Giannelis EP. Polymer-layered silicate nanocomposites: synthesis, properties and applications. ApplOrganometChem. 1998; 12: 675–80.
Xu R, Manias E, Snyder AJ, Runt J. New biomedical poly(urethane uera)-layered silicate nanocomposites. Macromolecules. 2001; 34: 337–9.
Kojima Y, Usuki A, Kawasumi M, Fukushima Y, Okada A, Kurauchi T, Kamigaito O. Mechanical properties of nylon 6–clay hybrid. J Mater Res. 1993; 8: 1179–84.
Gilman JW, Kashiwagi T, Lichtenhan JD. Flammability studies of polymer-layered silicate nanocomposites. SAMPE. J. 1997; 33: 40–5.
Gilman JW, Jackson CL, Morgan AB, Harris Jr R, Manias E,Giannelis EP, Wuthenow M, Hilton D, Phillips SH. Flammability properties of polymer-layered silicate nanocomposites. Propylene and polystyrene nanocomposites. Chem Mater. 2000; 12: 1866–73.
Sinha Ray S, Yamada K, Okamoto M, Ueda K. New polylactide/layered silicate nanocomposite: a novel biodegradable material. Nano Lett. 2002; 2: 1093–6.
Dabrowski F, Bourbigot S, Delbel R, Bras ML. Kinetic molding of the thermal degradation of polyamide-6 nanocomposite. EurPolym J. 2000; 36: 273–84.
Ginsburg VV, Balazs AC. Calculating phase diagrams for nanocomposites: the effect of adding end-functionalized chains to polymer/clay mixture. Adv Mater. 2000; 12: 1805–9.
Hackett E, Manias E, Giannelis EP. Molecular dynamics simulations of organically modified layered silicates.J ChemPhys. 1998; 108: 7410–5.
Manias E, Kuppa V. Relaxation of polymers in 2-nm slitpores: confinement induced segmental dynamics and suppression of the glass transition. Colloids Surf. A. 2001; 187–188: 509–21.
Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: A review. Materials Science and Engineering: C. 2017; 71: 1175-1191.
Langer R, Vacanti J. engenharia do Tecido. Ciência. 1993; 260: 920-6.
Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 2010; 6: 13–22.
Bhattarai D, Aguilar L, Park C, Kim C. A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering.Membranes. 2018; 8(3): 62.
Carlisle EM. Silicon: a requirement in bone formation independent of vitamin D 1. Calcified tissue international. 1981; 33(1): 27-34.
Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Hampson GN. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003; 32(2): 127-135.
Farquhar MG, Hay ED. Cell biology of extracellular matrix. 1991.
Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications.Biotechnology advances. 2010; 28(1): 142-150.
Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Jayakumar R. Electrospinning of carboxymethyl chitin/poly (vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydrate Polymers. 2009; 77(4): 863-869.
Hench LL. Bioceramics: from concept to clinic. Journal of the american ceramic society. 1991; 74(7): 1487-1510.
Bosetti M, Cannas M. The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials. 2005; 26(18): 3873-3879.
Foppiano S, Marshall SJ, Marshall GW, Saiz E, Tomsia AP. Bioactive glass coatings affect the behavior of osteoblast-like cells. Actabiomaterialia. 2007; 3(5): 765-771.
Hench LL. Genetic design of bioactive glass.Journal of the European Ceramic Society. 2009; 29(7): 1257-1265.
Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydrate polymers. 2010; 82(2): 227-232.
Oliveira JT, Reis RL. Polysaccharide‐based materials for cartilage tissue engineering applications.Journal of tissue engineering and regenerative medicine. 2011; 5(6): 421-436.
Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates and Dietary Fibre. 2015; 5(1): 31-61.
Khan F, Ahmad SR. Polysaccharides and their derivatives for versatile tissue engineering application.Macromolecular Bioscience. 2013; 13(4): 395-421.
Kalantari K, Afifi AM, Jahangirian H, Webster TJ. Biomedical applications of chitosan electrospunnanofibers as a green polymer–Review.Carbohydrate polymers. 2019; 207: 588-600.
Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials. 2007; 28(22): 3338-3348.
Bai RG, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. International journal of nanomedicine. 2019; 14: 5753.
Soundarya SP, Menon AH, Chandran SV, Selvamurugan N. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. International journal of biological macromolecules. 2018.
Nourmohammadi J, Ghaee A, Liavali SH. Preparation and characterization of bioactive composite scaffolds from polycaprolactonenanofibers-chitosan-oxidized starch for bone regeneration.Carbohydrate Polymers. 2016; 138: 172–179.
Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocompositenanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008; 29(32): 4314-4322.
Ghadri N, Anderson KM, Adatrow P, Stein SH, Su H, Garcia-Godoy F, Bumgardner JD. Evaluation of bone regeneration of simvastatin loaded chitosan nanofiber membranes in rodent calvarial defects. Journal of Biomaterials and Nanobiotechnology. 2018; 9(02): 210.
Wu C, Su H, Karydis A, Anderson KM, Ghadri N, Tang S, Bumgardner JD. Mechanically stable surface-hydrophobilized chitosan nanofibrous barrier membranes for guided bone regeneration.Biomedical Materials. 2017; 13(1): 1-10.
Jalvandi J, White M, Gao Y, Truong YB, Padhye R, Kyratzis IL. Polyvinyl alcohol composite nanofibres containing conjugated levofloxacin-chitosan for controlled drug release. Materials Science and Engineering C. 2017; 73: 440-446.
Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. Jbjs. 2008; 90: 36-42.
Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, Montaseri A. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artificial cells, nanomedicine, and biotechnology. 2018; 46(4): 691-705.
Aslankoohi N, Mondal D, Rizkalla AS, Mequanint K. Bone Repair and Regenerative Biomaterials: Towards Recapitulating the Microenvironment. Polymers. 2019; 11(9): 1437.
Siegwart DJ, Oh JK, Matyjaszewski K. ATRP in the design of functional materials for biomedical applications.Progress in polymer science. 2012; 37(1): 18-37.
Csaba N, Köping-Höggård M, Alonso MJ. Ionicallycrosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery.International journal of pharmaceutics. 2009; 382(1-2): 205-214.
Mao W, Li H, Li Y, Zhang H, Qi X, Sun H, Chen Y, Guo S. Chemical characteristic and anticoagulantactivityof the sulfatedpolysaccharideisolatedfrom Monostromalatissimum (Chlorophyta). International JournalofBiological Macromolecules. 2009; 44(1): 70–74.
Mizrahy S, Peer D. Polysaccharides as building blocks for nanotherapeutics.Chemical Society Reviews. 2012; 41(7), 2623-2640.
Valo H, Kovalainen M, Laaksonen P, Hakkinen M, Auriola S, Peltonen L, Linder M, Jarvinen K, Hirvonen J, Laaksonen T. Immobilizationofprotein-coateddrug nanoparticles innanofibrillarcellulosematrices–enhanced stability andrelease. Journal of ControlledRelease. 2011; 156(3): 390–397.
Reddy K, Krishna Mohan G, Satla S, Gaikwad S. Natural Polysaccharides: Versatile Excipients for controlled drug delivery systems. Asian Journal of Pharmaceutical Sciences. 2011; 6(6).
Martinichen-Herrero JC, Carbonero ER, Sassaki GL, Gorin PAJ, Iacomini M. Anticoagulant and antithrombotic activities of a chemically sulfated galactoglucomannan obtained from the lichen Cladoniaibitipocae. International journal of biological macromolecules. 2005; 35(1-2): 97-102.
Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications.Progress in Materials Science. 2010; 55(7): 675-709.
Dev A, Binulal NS, Anitha A, Nair SV, Furuike T, Tamura H, Jayakumar R. Preparation of poly (lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydrate polymers. 2010; 80(3): 833-838.
Higuchi Y, Oka M, Kawakami S, Hashida M. Mannosylated semiconductor quantum dots for the labeling of macrophages.Journal of Controlled Release. 2008; 125(2): 131-136.
Marchessault RH, Ravenelle F, Zhu XX. (Eds.). Polysaccharides for drug delivery and pharmaceutical applications.American Chemical Society. 2006.
Francis MF, Piredda M, Winnik FM. Hydroxypropylcellulose in oral drug delivery. In Polysaccharides for Drug Delivery and Pharmaceutical Applications, Marchessault RH, Ravenella F, Zhu XX, Editors, ACS Symposium Series. January 2006; 934.
Jain AK, Söderlind E, Viridén A, Schug B, Abrahamsson B, Knopke C, Richardson S. The influence of hydroxypropyl methylcellulose (HPMC) molecular weight, concentration and effect of food on in vivo erosion behavior of HPMC matrix tablets.Journal of controlled release. 2017; 187: 50-58.
Li J, Mei X. Applications of cellulose and cellulose derivatives in immediate release solid dosage.In Polysaccharides for drug delivery and pharmaceutical applications, ACS Symposium series. American chemical society, Washington, DC. January 2006; 934: 19-56.
Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T. Nanofibrillar cellulose films for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2012; 82(2): 308-315.
Chen MC, Huang SF, Lai KY, Ling MH. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination.Biomaterials. 2013; 34(12): 3077-3086.
Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA.Advanced drug delivery reviews. 2010; 62(1): 12-27.
Shelke NB, James R, Laurencin CT, Kumbar SG. Polysaccharide biomaterials for drug delivery and regenerative engineering.Polymers for Advanced Technologies. 2014; 25(5): 448-460.
Sundgren A, BarchiJr JJ. Varied presentation of the Thomsen–Friedenreich disaccharide tumor-associated carbohydrate antigen on gold nanoparticles.Carbohydrate research. 2008; 343(10-11): 1594-1604.
Tabasum S, Noreen A, Kanwal A, Zuber M, Anjum MN, Zia KM. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. International journal of biological macromolecules. 2017; 98: 748-776.
Friess W. Collagen–biomaterial for drug delivery.European Journal of Pharmaceutics and Biopharmaceutics. 1998; 45(2): 113-136.
Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration.Actabiomaterialia. 2012; 8(9): 3191-3200.
You JO, Auguste DT. Conductive, physiologically responsive hydrogels.Langmuir. 2010; 26(7): 4607-4612.
Barth D, Kyrieleis O, Frank S, Renner C, Moroder L. The Role of Cystine Knots in Collagen Folding and Stability, Part II. Conformational Properties of (Pro‐Hyp‐Gly) n Model Trimers with N‐and C‐Terminal Collagen Type III Cystine Knots.Chemistry–A European Journal. 2003; 9(15): 3703-3714.
Boudko SP, Engel J. Structure formation in the C terminus of type III collagen guides disulfide cross-linking. Journal of molecular biology. 2004; 335(5): 1289-1297.
Rathfon JM, Tew GN. Synthesis of thermoresponsive poly (N-isopropylmethacrylamide) and poly (acrylic acid) block copolymers via post-functionalization of poly (N-methacryloxysuccinimide). Polymer. 2008; 49(7): 1761-1769.
McCormick CL, Sumerlin BS, Lokitz BS, Stempka JE. RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media. Soft Matter. 2008; 4(9): 1760-1773.
Shunmugam R, Tew GN. Efficient route to well‐characterized homo, block, and statistical polymers containing terpyridine in the side chain.Journal of Polymer Science Part A: Polymer Chemistry. 2005; 43(23): 5831-5843.
Tavakoli J, Tang Y. Hydrogel based sensors for biomedical applications: an updated review. Polymers. 2017; 9(8): 364.
Shakya AK, Nandakumar KS. Applications of polymeric adjuvants in studying autoimmune responses and vaccination against infectious diseases.Journal of the Royal Society Interface. 2013; 10(79): 1-16.
Zhang Q, Colazo J, Berg D, Mugo SM, Serpe MJ. Multiresponsivenanogels for targeted anticancer drug delivery.Molecular pharmaceutics. 2017; 14(8): 2624-2628.
BernadeteRiemma Pierre M, Cristina Rossetti F. Microneedle-based drug delivery systems for transdermal route.Current drug targets. 2014; 15(3): 281-291.
Hong X, Wu Z, Chen L, Wu F, Wei L, Yuan W. Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Letters. 2014; 6(3): 191-199.
Gomes SR, Rodrigues G, Martins GG, Roberto MA, Mafra M, Henriques CMR, Silva JC. In vitro and in vivo evaluation of electrospunnanofibers of PCL, chitosan and gelatin: A comparative study. Materials Science and Engineering: C. 2015; 46: 348-358.
Madhumathi K, Kumar PS, Abhilash S, Sreeja V, Tamura H, Manzoor K, Jayakumar R. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. Journal of Materials Science: Materials in Medicine. 2010; 21(2): 807-813.
Sarhan WA, Azzazy HM, El-Sherbiny IM. Honey/chitosan nanofiber wound dressing enriched with Allium sativum and Cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS applied materials & interfaces. 2016; 8(10): 6379-6390.
Jayakumar R, Prabaharan M, Kumar PS, Nair SV, Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology advances. 2011; 29(3): 322-337.
Sudheesh Kumar PT, Abilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R. Preparation and characterization of novel -chitin/nano silver composite scaffolds for wound dressing applications.Carbohydrate Polymers. 2010; 80: 761–767.
Anilkumar TV, Muhamed J, Jose A, Jyothi A, Mohanan PV, Krishnan LK. Advantages of hyaluronic acid as a component of fibrin sheet for care of acute wound. Biologicals. 2011; 39(2): 81-88.
Chen WJ, Abatangelo G. Functions of hyaluronan in wound repair. Wound repair and regeneration. 1999; 7(2): 79-89.
Liakos I, Rizzello L, Scurr DJ, Pompa PP, Bayer IS, Athanassiou A. All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. International journal of pharmaceutics. 2014; 463(2): 137-145.
Ghadi R, Jain A, Khan W, Domb AJ. Microparticulate polymers and hydrogels for wound healing. In Wound Healing Biomaterials. 2016; 203-225.
Singh R, Singh D. Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing. Journal of Materials Science: Materials in Medicine. 2012; 23(11): 2649-2658.
Duvall CL, Convertine AJ, Benoit DS, Hoffman AS, Stayton PS. Intracellular delivery of a proapoptotic peptide via conjugation to a RAFT synthesized endosomolytic polymer. Molecular pharmaceutics. 2010; 7(2): 468-476.
Fairbanks BD, Gunatillake PA, Meagher L. Biomedical applications of polymers derived by reversible addition–fragmentation chain-transfer (RAFT).Advanced drug delivery reviews. 2010; 91: 141-152.
De P, Li M, Gondi SR, Sumerlin BS. Temperature-regulated activity of responsive polymer− protein conjugates prepared by grafting-from via RAFT polymerization.Journal of the American Chemical Society. 2008; 130(34): 11288-11289.
Tao L, Liu J, Davis TP. Branched polymer− protein conjugates made from mid-chain-functional P (HPMA). Biomacromolecules. 2009; 10(10): 2847-2851.
Tao L, Liu J, Xu J, Davis TP. Synthesis and bioactivity of poly (HPMA)–lysozyme conjugates: the use of novel thiazolidine-2-thione coupling chemistry. Organic &biomolecular chemistry. 2009; 7(17): 3481-3485.
Andrianifahanana M, Moniaux N, Batra SK. Regulation of mucin expression: mechanistic aspects and implications for cancer and inflammatory diseases. BiochimicaetBiophysicaActa (BBA)-Reviews on Cancer. 2006; 1765(2): 189-222.
Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. The Lancet. 2007; 369(9573): 1627-1640.
Lamprecht A. Nanomedicines in gastroenterology and hepatology.Nature Reviews Gastroenterology &Hepatology. 2015; 12(4): 195.
Meissner Y, Lamprecht A. Alternative drug delivery approaches for the therapy of inflammatory bowel disease. Journal of pharmaceutical sciences. 2008; 97(8): 2878-2891.
Nakase H, Okazaki K, Tabata Y, Uose S, Ohana M, Uchida K, Ikada Y. An oral drug delivery system targeting immune-regulating cells ameliorates mucosal injury in trinitrobenzene sulfonic acid-induced colitis. Journal of Pharmacology and Experimental Therapeutics. 2001; 297(3): 1122-1128.
Laroui H, Dalmasso G, Nguyen HTT, Yan Y, Sitaraman SV, Merlin D. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology. 2010; 138(3): 843-853.
Moulari B, Béduneau A, Pellequer Y, Lamprecht A. Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. Journal of controlled release. 2014; 188: 9-17.
Sharma PK. Novel prospective in colon specific drug delivery system.Polim. Med. 2014; 44(2): 109-118.
Park TH, Shuler ML. Integration of cell culture and microfabrication technology.Biotechnology progress. 2003; 19(2): 243-253.
Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. Journal of controlled release. 2015; 219: 500-518.
Wang X, Uchiyama S. Polymers for biosensors construction.State of the Art in Biosensors—General Aspects. 2013; 3: 67-84.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.