Overview of nanogel and its applications

Authors

  • Shailesh D Ghaywat Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur- 441002 (M.S.), India-441002.
  • Pooja S Mate Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur- 441002 (M.S.), India-441002.
  • Yogesh M Parsutkar Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur- 441002 (M.S.), India-441002.
  • Ashwini D Chandimeshram Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur- 441002 (M.S.), India-441002.
  • Milind J Umekar Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur- 441002 (M.S.), India-441002.

DOI:

https://doi.org/10.30574/gscbps.2021.16.1.0196

Keywords:

Nanogel, Micromolecules, Anticancer Therapy, Neurodegenerative Diseases, Antibody Conjugation

Abstract

Nanogel have emerged as a versatile drug delivery system for encapsulation of guest molecules. A nanoparticle which is composed of hydrophilic polymer network known as Nanogel having range from 100-200nm. Nanogel have swellable and degradation properties with high drug loading capacity, high stability, sustained and targetable manner, large surface area. Therefore, nanogel are more productive than conventional and micro-sized delivery. In recent year in the field of biotechnology nanogel were prominently used to deal with genetics, enzyme immobilization and protein synthesis. Moreover, it has productive asset for the development of novel therapeutic system in medicine. These are soft materials capable of holding small molecular biomacromolecules, therapeutics, and inorganic nanoparticles within their crosslinked networks, which allows them to find applications for therapy as well as imaging of a variety of disease conditions. These properties not only enhance the functionality of the carrier system but also help in overcoming many challenges associated with the delivery of cargo molecules. This review aims to highlight the distinct and unique capabilities of nanogels as carrier system, Synthesis of nanogels, Types of Physical and chemical crosslinked nanogels, Stimuli responsive behavior, In vivo behavior, Therapeutic drug carrier, marketed formulation of Nanogels and the last part of review summarizes the applications of nanogels in various diseases. Transdermal drug delivery, diabetes, anti-inflammatory, vaginal drug delivery, neurodegenerative diseases, ocular dieses, autoimmune disease, and anticancer treatment for specially targeting the cancer cells, thereby reducing uptake into healthy cells. This nanogel drug delivery is a phenomenal system, and further depth study is required to explore their interaction at cellular and molecular levels and minimize the challenges.

Metrics

Metrics Loading ...

References

Sultana F, Manirujjaman M, Imran-Ul-Haque MA, Sharmin S. An overview of nanogel drug delivery system. J Appl Pharm Sci. Sep 2013; 3(8): 95-105.

Patel HA, Patel JK. Nanogel as a controlled drug delivery system. Int. J. Pharm. Sci. Rev. Res. 2010; 4(2): 37-41.

Dorwal D. Nanogels as novel and versatile pharmaceuticals. Int J Pharm Pharm Sci. 2012; 4(3): 67-74.

Adhikari B, Cherukuri S, Reddy CS, Haranath C, Bhatta HP, Naidu Inturi R. Recent advances in nanogels drug delivery systems. World Journal of Pharmacy and Pharmaceutical Sciences. 2016; 5(9): 505-30.

Prasad K, Vijay G, Jayakumari NK, Dhananjaya A, Valliyil L. Nanogel as a smart vehicle for local drug delivery in dentistry. American Journal of Pharmacy and Health Research. 2015; 3(1): 19-30.

Garg T, Singh O, Arora S, Murthy RS. Scaffold: a novel carrier for cell and drug delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2012; 29(1).

Bencherif SA, Siegwart DJ, Srinivasan A, Horkay F, Hollinger JO, Washburn NR, Matyjaszewski K. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials. 1 Oct 2009; 30(29): 5270-8.

Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angewandte Chemie International Edition. 13 Jul 2009; 48(30): 5418-29.

Lee H, Mok H, Lee S, Oh YK, Park TG. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. Journal of Controlled Release. 1 Jun 2007; 119(2): 245-52.

Hayashi H, Iijima M, Kataoka K, Nagasaki Y. pH-sensitive nanogel possessing reactive PEG tethered chains on the surface. Macromolecules. 13 Jul 2004; 37(14): 5389-96.

Oh JK, Lee DI, Park JM. Biopolymer-based microgels/nanogels for drug delivery applications. Progress in polymer science. 1 Dec 2009; 34(12): 1261-82.

Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science. 1 Apr 2008; 33(4): 448-77.

Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Advanced drug delivery reviews. 15 Jun 2012; 64(9): 836-51.

Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Advanced drug delivery reviews. 14 Dec 2008; 60(15): 1638-49.

Ferreira SA, Gama FM, Vilanova M. Polymeric nanogels as vaccine delivery systems. Nanomedicine: Nanotechnology, Biology and Medicine. 1 Feb 2013; 9(2): 159-73.

Hoare T, Sivakumaran D, Stefanescu CF, Lawlor MW, Kohane DS. Nanogel scavengers for drugs: Local anesthetic uptake by thermoresponsive nanogels. Acta biomaterialia. 1 Apr 2012; 8(4): 1450-8.

Ayame H, Morimoto N, Akiyoshi K. Self-assembled cationic nanogels for intracellular protein delivery. Bioconjugate chemistry. 16 Apr 2008; 19(4): 882-90.

Ramos J, Imaz A, Forcada J. Temperature-sensitive nanogels: poly (N-vinylcaprolactam) versus poly (N-isopropylacrylamide). Polymer Chemistry. 2012; 3(4): 852-6.

Lv W, Liu S, Feng W, Qi J, Zhang G, Zhang F, Fan X. Temperature‐and Redox‐Directed Multiple Self Assembly of Poly (N‐Isopropylacrylamide) Grafted Dextran Nanogels. Macromolecular rapid communications. 15 Jul 2011; 32(14): 1101-7.

Cavalieri F, Postma A, Lee L, Caruso F. Assembly and functionalization of DNA− polymer microcapsules. Acs Nano. 27 Jan 2009; 3(1): 234-40.

Molinos M, Carvalho V, Silva DM, Gama FM. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system. Biomacromolecules. 13 Feb 2012; 13(2): 517-27.

Schmitt F, Lagopoulos L, Käuper P, Rossi N, Busso N, Barge J, Wagnières G, Laue C, Wandrey C, Juillerat-Jeanneret L. Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. Journal of Controlled Release. 1 Jun 2010; 144(2): 242-50.

Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter. 2009; 5(4): 707-15.

Qiao ZY, Zhang R, Du FS, Liang DH, Li ZC. Multi-responsive nanogels containing motifs of ortho ester, oligo (ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. Journal of controlled release. 30 May 2011; 152(1): 57-66.

Ferrer MC, Dastgheyb S, Hickok NJ, Eckmann DM, Composto RJ. Designing nanogel carriers for antibacterial applications. Acta biomaterialia. 1 May 2014; 10(5): 2105-11.

Murphy EA, Majeti BK, Mukthavaram R, Acevedo LM, Barnes LA, Cheresh DA. Targeted nanogels: a versatile platform for drug delivery to tumors. Molecular cancer therapeutics. 1 Jun 2011; 10(6): 972-82.

Ferreira SA, Oslakovic C, Cukalevski R, Frohm B, Dahlbäck B, Linse S, Gama FM, Cedervall T. Biocompatibility of mannan nanogel—safe interaction with plasma proteins. Biochimica et Biophysica Acta (BBA)-General Subjects. 1 Jul 2012; 1820(7): 1043-51.

He L, Liang H, Lin L, Shah BR, Li Y, Chen Y, Li B. Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. Colloids and Surfaces B: Biointerfaces. 1 Feb 2015; 126: 288-96.

Li N, Wang J, Yang X, Li L. Novel nanogels as drug delivery systems for poorly soluble anticancer drugs. Colloids and Surfaces B: Biointerfaces. 1 Apr 2011; 83(2): 237-44.

Ayame H, Morimoto N, Akiyoshi K. Self-assembled cationic nanogels for intracellular protein delivery. Bioconjugate chemistry. 16 Apr 2008; 19(4): 882-90.

Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Tropical Journal of Pharmaceutical Research. 9 May 2013; 12(2): 255-64.

Zhao C, Chen Q, Patel K, Li L, Li X, Wang Q, Zhang G, Zheng J. Synthesis and characterization of pH-sensitive poly (N-2-hydroxyethyl acrylamide)–acrylic acid (poly (HEAA/AA)) nanogels with antifouling protection for controlled release. Soft Matter. 2012; 8(30): 7848-57.

Lemieux P, Vinogradov S, Gebhart C, Guerin N, Paradis G, Nguyen HK, Ochietti B, Suzdaltseva Y, Bartakova E, Bronich T, St-Pierre Y. Block and graft copolymers and Nanogel™ copolymer networks for DNA delivery into cell. Journal of Drug Targeting. 1 Jan 2000; 8(2): 91-105.

Lee Y, Park SY, Kim C, Park TG. Thermally triggered intracellular explosion of volume transition nanogels for necrotic cell death. Journal of controlled release. 2 Apr 2009; 135(1): 89-95.

Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. The Chemical Record. 13 Dec 2010; 10(6): 366-76.

Alvarez-Lorenzo CA, Moya-Ortega MD, Loftsson T, Concheiro A, Torres-Labandeira JJ. Cyclodextrin-based hydrogels. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications. 9 May 2011: 297-321.

Vintiloiu A, Leroux JC. Organogels and their use in drug delivery—a review. Journal of controlled release. 11 Feb 2008; 125(3): 179-92.

Tiwari S, Singh S, Tripathi PK, Dubey CK. A Review-Nanogel Drug Delivery System. Asian Journal of Research in Pharmaceutical Science. 2015; 5(4): 253-5.

Wani TU, Rashid M, Kumar M, Chaudhary S, Kumar P, Mishra N. Targeting aspects of nanogels: an overview. International Journal of Pharmaceutical Sciences and Nanotechnology. 2014; 7(4): 2612-30.

Zarekar NS, Lingayat VJ, Pande VV. Nanogel as a novel platform for smart drug delivery system. Nanoscience and Nanotechnology. Mar 2017; 4(1): 25-31.

Sawada SI, Sasaki Y, Nomura Y, Akiyoshi K. Cyclodextrin-responsive nanogel as an artificial chaperone for horseradish peroxidase. Colloid and Polymer Science. Apr 2011; 289(5): 685-91.

Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science. 1 Apr 2008; 33(4): 448-77.

Samah NA, Williams N, Heard CM. Nanogel particulates located within diffusion cell receptor phases following topical application demonstrates uptake into and migration across skin. International journal of pharmaceutics. 30 Nov 2010; 401(1-2): 72-8.

Garg T, Singh S, Goyal AK. Stimuli-sensitive hydrogels: an excellent carrier for drug and cell delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2013; 30(5).

Guerrero-Ramírez LG, Nuno-Donlucas SM, Cesteros LC, Katime I. Smart copolymeric nanohydrogels: Synthesis, characterization and properties. Materials Chemistry and Physics. 20 Dec 2008; 112(3): 1088-92.

Singh N, Gill V, Gill P. Nanogel based artificial chaperone technology: an overview. American Journal of Advanced Drug Delivery. 2013; 1(3): 271-6.

Rossetti GH, Albizzati ED, Alfano OM. Decomposition of formic acid in a water solution employing the photo-Fenton reaction. Industrial & engineering chemistry research. 20 Mar 2002; 41(6): 1436-44.

Wang NX, von Recum HA. Affinity‐based drug delivery. Macromolecular bioscience. 10 Mar 2011; 11(3): 321-32.

Kabanov AV, Alakhov VY. Pluronic® block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2002; 19(1).

Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Advanced drug delivery reviews. 17 Jan 2002; 54(1): 135-47.

Lim CK, Singh A, Heo J, Kim D, Lee KE, Jeon H, Koh J, Kwon IC, Kim S. Gadolinium-coordinated elastic nanogels for in vivo tumor targeting and imaging. Biomaterials. 1 Sep 2013; 34(28): 6846-52.

Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Delivery. 1 Jan 2017; 24(1): 539-57.

Moya-Ortega MD, Alvarez-Lorenzo C, Concheiro A, Loftsson T. Cyclodextrin-based nanogels for pharmaceutical and biomedical applications. International journal of pharmaceutics. 30 May 2012; 428(1-2): 152-63.

Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. Journal of Controlled Release. 28 Oct 2016; 240: 109-26.

Yadav HK, Al Halabi NA, Alsalloum GA. Nanogels as novel drug delivery systems-a review. J. Pharm. Pharm. Res. 2017; 1(5).

Labhasetwar V, Diandra L, Pelecky L. Biomedical Applications of Nanotechnology Nanogels. Chemistry to Drug Delivery. 2007; 131-72.

Nair HB, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, Aggarwal BB. Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochemical pharmacology. 2010; 15 Dec 80(12): 1833-43.

Bronich TK, Keifer PA, Shlyakhtenko LS, Kabanov AV. Polymer micelle with cross-linked ionic core. Journal of the American Chemical Society. 15 Jun 2005; 127(23): 8236-7.

O'Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chemical Society Reviews. 2006; 35(11): 1068-83.

Oishi M, Nagasaki Y. Stimuli-responsive smart nanogels for cancer diagnostics and therapy. Nanomedicine. Apr 2010; 5(3): 451-68.

Chiang WH, Ho VT, Huang WC, Huang YF, Chern CS, Chiu HC. Dual stimuli-responsive polymeric hollow nanogels designed as carriers for intracellular triggered drug release. Langmuir. 23 Oct 2012; 28(42): 15056-64.

Sanson N, Rieger J. Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization. Polymer Chemistry. 2010; 1(7): 965-77.

Elsabahy M, Heo GS, Lim SM, Sun G, Wooley KL. Polymeric nanostructures for imaging and therapy. Chemical reviews. 14 Oct 2015; 115(19): 10967-1011.

Desale SS, Cohen SM, Zhao Y, Kabanov AV, Bronich TK. Biodegradable hybrid polymer micelles for combination drug therapy in ovarian cancer. Journal of Controlled Release. 10 Nov 2013; 171(3): 339-48.

Gratton SE, Pohlhaus PD, Lee J, Guo J, Cho MJ, DeSimone JM. Nanofabricated particles for engineered drug therapies: A preliminary biodistribution study of PRINT™ nanoparticles. Journal of Controlled Release. 16 Aug 2007; 121(1-2): 10-8.

Perry JL, Herlihy KP, Napier ME, DeSimone JM. PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Accounts of chemical research. 18 Oct 2011; 44(10): 990-8.

Glangchai LC, Caldorera-Moore M, Shi L, Roy K. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. Journal of Controlled Release. 11 Feb 2008; 125(3): 263-72.

Akiyoshi K, Kang EC, Kurumada S, Sunamoto J, Principi T, Winnik FM. Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly (N-isopropylacrylamides). Macromolecules. 2 May 2000; 33(9): 3244-9.

Kuroda K, Fujimoto K, Sunamoto J, Akiyoshi K. Hierarchical self-assembly of hydrophobically modified pullulan in water: gelation by networks of nanoparticles. Langmuir. 14 May 2002; 18(10): 3780-6.

Lee I, Akiyoshi K. Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces. Biomaterials. 1 Jul 2004; 25(15): 2911-8.

Rösler A, Vandermeulen GW, Klok HA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev. 3 Dec 2001; 53(1): 95-108.

Kono K, Igawa T, Takagishi T. Cytoplasmic delivery of calcein mediated by liposomes modified with a pH-sensitive poly (ethylene glycol) derivative. Biochimica et Biophysica Acta (BBA)-Biomembranes. 26 Apr 1997; 1325(2): 143-54.

Roux E, Stomp R, Giasson S, PÉzolet M, Moreau P, Leroux JC. Steric stabilization of liposomes by pH‐responsive N‐isopropylacrylamide copolymer. Journal of pharmaceutical sciences. 1 Aug 2002; 91(8): 1795-802.

Wang H, Chen Q, Zhou S. Carbon-based hybrid nanogels: A synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chemical Society Reviews. 2018; 47(11): 4198-232.

Cortez-Lemus NA, Licea-Claverie A. Poly (N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Progress in Polymer Science. 1 Feb 2016; 53: 1-51.

Wang J, Wang X, Yan G, Fu S, Tang R. pH-sensitive nanogels with ortho ester linkages prepared via thiol-ene click chemistry for efficient intracellular drug release. Journal of colloid and interface science. 15 Dec 2017; 508: 282-90.

Dispenza C, Spadaro G, Jonsson M. Radiation engineering of multifunctional nanogels. Applications of Radiation Chemistry in the Fields of Industry, Biotechnology and Environment. 2017; 95-120.

He J, Tong X, Zhao Y. Photoresponsive nanogels based on photocontrollable cross-links. Macromolecules. 14 Jul 2009; 42(13): 4845-52.

Smeets NM, Hoare T. Designing responsive microgels for drug delivery applications. Journal of Polymer Science Part A: Polymer Chemistry. 15 Jul 2013; 51(14): 3027-43.

Lee H, Fonge H, Hoang B, Reilly RM, Allen C. The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Molecular pharmaceutics. 2 Aug 2010; 7(4): 1195-208.

Liu R, Hu C, Yang Y, Zhang J, Gao H. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharmaceutica Sinica B. 1 Mar 2019; 9(2): 410-20.

Liu R, Xiao W, Hu C, Xie R, Gao H. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. Journal of controlled release. 28 May 2018; 278: 127-39.

Qian J, Wu F. Thermosensitive PNIPAM semi-hollow spheres for controlled drug release. Journal of Materials Chemistry B. 2013; 1(28): 3464-9.

Wang D, Huang H, Zhou M, Lu H, Chen J, Chang YT, Gao J, Chai Z, Hu Y. A thermoresponsive nanocarrier for mitochondria-targeted drug delivery. Chemical Communications. 2019; 55(28): 4051-4.

Tokuyama H, Kato Y. Preparation of poly (N-isopropylacrylamide) emulsion gels and their drug release behaviors. Colloids and Surfaces B: Biointerfaces. 15 Nov 2008; 67(1): 92-8.

Pan G, Guo Q, Cao C, Yang H, Li B. Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins. Soft Matter. 2013; 9(14): 3840-50.

Chen Z, Wu C, Zhang Z, Wu W, Wang X, Yu Z. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chinese Chemical Letters. 1 Nov 2018; 29(11): 1601-8.

Pan J, Hu P, Guo Y, Hao J, Ni D, Xu Y, Bao Q, Yao H, Wei C, Wu Q, Shi J. Combined magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments. ACS nano. 14 Jan 2020; 14(1): 1033-44.

Cazares-Cortes E, Espinosa A, Guigner JM, Michel A, Griffete N, Wilhelm C, Ménager C. Doxorubicin intracellular remote release from biocompatible oligo (ethylene glycol) methyl ether methacrylate-based magnetic nanogels triggered by magnetic hyperthermia. ACS applied materials & interfaces. 9 Aug 2017; 9(31): 25775-88.

Seah BC, Teo BM. Recent advances in ultrasound-based transdermal drug delivery. International journal of nanomedicine. 2018; 13: 7749.

Fan CH, Lin CY, Liu HL, Yeh CK. Ultrasound targeted CNS gene delivery for Parkinson's disease treatment. Journal of Controlled Release. 10 Sep 2017; 261: 246-62.

Chen M, Liang X, Gao C, Zhao R, Zhang N, Wang S, Chen W, Zhao B, Wang J, Dai Z. Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxyuridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal cancer. ACS nano. 14 Jun 2018; 12(7): 7312-26.

Qiao L, Wang X, Gao Y, Wei Q, Hu W, Wu L, Li P, Zhu R, Wang Q. Laccase-mediated formation of mesoporous silica nanoparticle based redox stimuli-responsive hybrid nanogels as a multifunctional nanotheranostic agent. Nanoscale. 2016; 8(39): 17241-9.

Peng J, Qi T, Liao J, Fan M, Luo F, Li H, Qian Z. Synthesis and characterization of novel dual-responsive nanogels and their application as drug delivery systems. Nanoscale. 2012; 4(8): 2694-704.

Nukolova NV, Oberoi HS, Cohen SM, Kabanov AV, Bronich TK. Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials. 1 Aug 2011; 32(23): 5417-26.

Huang X, Yin Y, Wu M, Zan W, Yang Q. LyP-1 peptide-functionalized gold nanoprisms for SERRS imaging and tumor growth suppressing by PTT induced-hyperthermia. Chinese Chemical Letters. 1 Jun 2019; 30(6): 1335-40.

Ruoslahti E. Arg-Gly-Asp: a versatile cell recognition signal. Cell. 1986; 144: 517-8.

Nukolova NV, Yang Z, Kim JO, Kabanov AV, Bronich TK. Polyelectrolyte nanogels decorated with monoclonal antibody for targeted drug delivery. Reactive and Functional Polymers. 1 Mar 2011; 71(3): 315-23.

Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blättler WA, Lambert JM, Chari RV, Lutz RJ, Wong WL. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody–cytotoxic drug conjugate. Cancer research. 15 Nov 2008; 68(22): 9280-90.

Gao X, Yang H, Wu M, Shi K, Zhou C, Peng J, Yang Q. Targeting delivery of lidocaine and cisplatin by nanogel enhances chemotherapy and alleviates metastasis. ACS applied materials & interfaces. 6 Jul 2018; 10(30): 25228-40.

Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials. 1 Jun 2017; 128: 69-83.

Yang Q, Xiao Y, Yin Y, Li G, Peng J. Erythrocyte membrane-camouflaged IR780 and DTX coloading polymeric nanoparticles for imaging-guided cancer photo–chemo combination therapy. Molecular pharmaceutics. 30 May 2019; 16(7): 3208-20.

Gao C, Lin Z, Jurado‐Sánchez B, Lin X, Wu Z, He Q. Stem cell membrane‐coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small. Aug 2016; 12(30): 4056-62.

Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Advanced drug delivery reviews. 15 Jun 2012; 64(9): 836-51.

Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International journal of pharmaceutics. Jan 2006; 307(1): 93-102.

Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nature materials. Jan 2009; 8(1): 15-23.

Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological reviews. 1 Jun 2001; 53(2): 283-318.

Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chemical Society Reviews. 2012; 41(7): 2971-3010.

Torchilin VP. Multifunctional nanocarriers. Advanced drug delivery reviews. 1 Dec 2012; 64: 302-15.

Desale SS, Raja SM, Kim JO, Mohapatra B, Soni KS, Luan H, Williams SH, Bielecki TA, Feng D, Storck M, Band V. Polypeptide-based nanogels co-encapsulating a synergistic combination of doxorubicin with 17-AAG show potent anti-tumor activity in ErbB2-driven breast cancer models. Journal of Controlled Release. 28 Jun 2015; 208: 59-66.

Vinogradov SV. Colloidal microgels in drug delivery applications. Current pharmaceutical design. 1 Dec 2006; 12(36): 4703-12.

Bronich TK, Vinogradov SV, Kabanov AV. Interaction of nanosized copolymer networks with oppositely charged amphiphilic molecules. Nano Letters. 10 Oct 2001; 1(10): 535-40.

Galmarini CM, Warren G, Kohli E, Zeman A, Mitin A, Vinogradov SV. Polymeric nanogels containing the triphosphate form of cytotoxic nucleoside analogues show antitumor activity against breast and colorectal cancer cell lines. Molecular cancer therapeutics. 1 Oct 2008; 7(10): 3373-80.

Gerson T, Makarov E, Senanayake TH, Gorantla S, Poluektova LY, Vinogradov SV. Nano-NRTIs demonstrate low neurotoxicity and high antiviral activity against HIV infection in the brain. Nanomedicine: Nanotechnology, Biology and Medicine. 1 Jan 2014; 10(1): 177-85.

Coll Ferrer MC, Shuvaev VV, Zern BJ, Composto RJ, Muzykantov VR, Eckmann DM. Icam-1 targeted nanogels loaded with dexamethasone alleviate pulmonary inflammation. PloS one. 14 Jul 2014; 9(7): e102329.

Ferrer MC, Ferrier RC, Eckmann DM, Composto RJ. A facile route to synthesize nanogels doped with silver nanoparticles. Journal of nanoparticle research. 2013 Jan; 15(1): 1-7.

Dias N, Stein CA. Potential roles of antisense oligonucleotides in cancer therapy. The example of Bcl-2 antisense oligonucleotides. European journal of pharmaceutics and biopharmaceutics. 1 Nov 2002; 54(3): 263-9.

Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, Robbins PD, Gadiparthi S, Burke NA, Watkins SF, Grandis JR. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proceedings of the National Academy of Sciences. 1 Apr 2003; 100(7): 4138-43.

Olie RA, Simões-Wüst AP, Baumann B, Leech SH, Fabbro D, Stahel RA, Zangemeister-Wittke U. A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer research. 1 Jun 2000; 60(11): 2805-9.

SEIDMAN S, ECKSTEIN F, GRIFMAN M, SOREQ H. Antisense technologies have a future fighting neurodegenerative diseases. Antisense and Nucleic Acid Drug Development. Aug 1999; 9(4): 333-40.

Ho SP, Hartig PR. Antisense oligonucleotides for target validation in the CNS. Current opinion in molecular therapeutics. 1 Jun 1999; 1(3): 336-43.

McCarthy MM, Auger AP, Mong JA, Sickel MJ, Davis AM. Antisense oligodeoxynucleotides as a tool in developmental neuroendocrinology. Methods. 1 Nov 2000; 22(3): 239-48.

Agrawal S, Ikeuchi T, Sun D, Sarin PS, Konopka A, Maizel J, Zamecnik PC. Inhibition of human immunodeficiency virus in early infected and chronically infected cells by antisense oligodeoxynucleotides and their phosphorothioate analogues. Proceedings of the National Academy of Sciences. 1 Oct 1989; 86(20): 7790-4.

Wu GY, Wu CH. Specific inhibition of hepatitis B viral gene expression in vitro by targeted antisense oligonucleotides. Journal of Biological Chemistry. 25 Jun 1992; 267(18): 12436-9.

Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, Van Der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R. Treatment of HCV infection by targeting microRNA. New England Journal of Medicine. 2 May 2013; 368(18): 1685-94.

Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjugate chemistry. Jan 2004; 15(1): 50-60.

Nishikawa T, Akiyoshi K, Sunamoto J. Supramolecular assembly between nanoparticles of hydrophobized polysaccharide and soluble protein complexation between the self-aggregate of cholesterol-bearing pullulan and. alpha.-chymotrypsin. Macromolecules. Dec 1994; 27(26): 7654-9.

Akiyoshi K, Kobayashi S, Shichibe S, Mix D, Baudys M, Kim SW, Sunamoto J. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. Journal of Controlled Release. 14 Aug 1998; 54(3): 313-20.

Itani R, Al Faraj A. siRNA Conjugated Nanoparticles—A Next Generation Strategy to Treat Lung Cancer. International journal of molecular sciences. Jan 2019; 20(23): 6088.

De Carvalho Vicentini FT, Borgheti-Cardoso LN, Depieri LV, de Macedo Mano D, Abelha TF, Petrilli R, Bentley MV. Delivery systems and local administration routes for therapeutic siRNA. Pharmaceutical research. Apr 2013; 30(4): 915-31.

Ni R, Feng R, Chau Y. Synthetic approaches for nucleic acid delivery: choosing the right carriers. Life. Sep 2019; 9(3): 59.

Xue H, Ding F, Zhang J, Guo Y, Gao X, Feng J, Zhu X, Zhang C. DNA tetrahedron-based nanogels for siRNA delivery and gene silencing. Chemical Communications. 2019; 55(29): 4222-5.

Desale SS, Soni KS, Romanova S, Cohen SM, Bronich TK. Targeted delivery of platinum-taxane combination therapy in ovarian cancer. Journal of Controlled Release. 28 Dec 2015; 220: 651-9.

Katagiri K, Ohta K, Koumoto K, Kurosu K, Sasaki Y, Akiyoshi K. Templated nucleation of hybrid iron oxide nanoparticles on polysaccharide nanogels. Colloid and Polymer Science. Jun 2013; 291(6): 1375-80.

Choo ES, Tang X, Sheng Y, Shuter B, Xue J. Controlled loading of superparamagnetic nanoparticles in fluorescent nanogels as effective T 2-weighted MRI contrast agents. Journal of Materials Chemistry. 2011; 21(7): 2310-9.

Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chemical reviews. 12 May 2010; 110(5): 3019-42.

Soleimani A, Martínez F, Economopoulos V, Foster PJ, Scholl TJ, Gillies ER. Polymer cross-linking: a nanogel approach to enhancing the relaxivity of MRI contrast agents. Journal of Materials Chemistry B. 2013; 1(7): 1027-34.

Paquet C, de Haan HW, Leek DM, Lin HY, Xiang B, Tian G, Kell A, Simard B. Clusters of superparamagnetic iron oxide nanoparticles encapsulated in a hydrogel: a particle architecture generating a synergistic enhancement of the T2 relaxation. Acs Nano. 26 Apr 2011; 5(4): 3104-12.

Bloembergen N, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance absorption. Physical review. 1 Apr 1948; 73(7): 679.

Shapiro YE. Structure and dynamics of hydrogels and organogels: An NMR spectroscopy approach. Progress in Polymer Science. 1 Sep 2011; 36(9): 1184-253.

Lux J, White AG, Chan M, Anderson CJ, Almutairi A. Nanogels from metal-chelating crosslinkers as versatile platforms applied to copper-64 PET imaging of tumors and metastases. Theranostics. 2015; 5(3): 277.

Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose SJ, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 28 Jan 2005; 307(5709): 538-44

Weissleder R. A clearer vision for in vivo imaging. Nature biotechnology. Apr 2001; 19(4): 316-7.

Abandansari HS, Nabid MR, Rezaei SJ, Niknejad H. pH-sensitive nanogels based on Boltorn® H40 and poly (vinylpyridine) using mini-emulsion polymerization for delivery of hydrophobic anticancer drugs. Polymer. 5 Aug 2014; 55(16): 3579-90.

Talele S, Nikam P, Ghosh B, Deore C, Jaybhave A, Jadhav A. A research article on nanogel as topical promising drug delivery for diclofenac sodium. Indian Journal of Pharmaceutical Education and Research. 1 Oct 2017; 51(4S): S580-587.

Lee J, Lee C, Kim TH, Lee ES, Shin BS, Chi SC, Park ES, Lee KC, Youn YS. Self-assembled glycol chitosan nanogels containing palmityl-acylated exendin-4 peptide as a long-acting anti-diabetic inhalation system. Journal of controlled release. 10 Aug 2012; 161(3): 728-34.

Mohammed N, Rejinold NS, Mangalathillam S, Biswas R, Nair SV, Jayakumar R. Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections. Journal of biomedical nanotechnology. 1 Jan 2013; 9(9): 1521-31.

Sahoo CK, Nayak PK, Sarangi DK, Sahoo TK. Intra vaginal drug delivery system: an overview. Am. J. Adv. Drug Deliv. 2013; 1: 43-55.

Zarekar NS, Lingayat VJ, Pande VV. Nanogel as a novel platform for smart drug delivery system. Nanoscience and Nanotechnology. Mar 2017; 4(1): 25-31.

Manna S, Lakshmi US, Racharla M, Sinha P, Kanthal LK, Kumar SP. Bioadhesive HPMC gel containing gelatin nanoparticles for intravaginal delivery of tenofovir. J App Pharm Sci. Aug 2016; 6(8): 22-9.

Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjugate chemistry. 21 Jan 2004; 15(1): 50-60.

Suhail M, Rosenholm JM, Minhas MU, Badshah SF, Naeem A, Khan KU, Fahad M. Nanogels as drug-delivery systems: A comprehensive overview. Therapeutic delivery. Nov 2019; 10(11): 697-717.

Mbuya V, Gupta N, Tash T. Application of nanogels in reduction of drug resistance in cancer chemotherapy. J. Chem. Pharm. Res. 2016; 8(2): 556-61.

Yallapu MM, Jaggi M, Chauhan SC. Design and engineering of nanogels for cancer treatment. Drug discovery today. 1 May 2011; 16(9-10): 457-63.

Vijayaraghavalu S, Labhasetwar V. Efficacy of decitabine-loaded nanogels in overcoming cancer drug resistance is mediated via sustained DNA methyltransferase 1 (DNMT1) depletion. Cancer letters. 30 Apr 2013; 331(1): 122-9.

Na K, Park KH, Kim SW, Bae YH. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). Journal of Controlled Release. 3 Nov 2000; 69(2): 225-36.

Lu S, Neoh KG, Huang C, Shi Z, Kang ET. Polyacrylamide hybrid nanogels for targeted cancer chemotherapy via co-delivery of gold nanoparticles and MTX. Journal of colloid and interface science. 15 Dec 2013; 412: 46-55.

Manchun S, Dass CR, Sriamornsak P. Targeted therapy for cancer using pH-responsive nanocarrier systems. Life sciences. 10 Mar 2012; 90(11-12): 381-7.

Zhou T, Xiao C, Fan J, Chen S, Shen J, Wu W, Zhou S. A nanogel of on-site tunable pH-response for efficient anticancer drug delivery. Acta biomaterialia. 1 Jan 2013; 9(1): 4546-57.

He H, Cattran AW, Nguyen T, Nieminen AL, Xu P. Triple-responsive expansile nanogel for tumor and mitochondria targeted photosensitizer delivery. Biomaterials. 1 Nov 2014; 35(35): 9546-53.

Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. Journal of pharmacy and pharmacology. Aug 2008; 60(8): 977-85.

Nakamura T, Tamura A, Murotani H, Oishi M, Jinji Y, Matsuishi K, Nagasaki Y. Large payloads of gold nanoparticles into the polyamine network core of stimuli-responsive PEGylated nanogels for selective and noninvasive cancer photothermal therapy. Nanoscale. 2010; 2(5): 739-46.

Grantab R, Sivananthan S, Tannock IF. The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer research. 15 Jan 2006; 66(2): 1033-9.

Kaur L, Jain SK, Singh K. Vitamin E TPGS based nanogel for the skin targeting of high molecular weight anti-fungal drug: development and in vitro and in vivo assessment. RSC advances. 2015; 5(66): 53671-86.

Wu Z, Zhang X, Guo H, Li C, Yu D. An injectable and glucose-sensitive nanogel for controlled insulin release. Journal of Materials Chemistry. 2012; 22(42): 22788-96.

Goel A, Ahmad FJ, Singh RM, Singh GN. Anti-inflammatory activity of nanogel formulation of 3-acetyl-11-keto-β-boswellic acid. Pharmacologyonline. 2009; 3: 311-8.

Abd El-Rehim HA, Swilem AE, Klingner A, Hegazy ES, Hamed AA. Developing the potential ophthalmic applications of pilocarpine entrapped into polyvinylpyrrolidone–poly (acrylic acid) nanogel dispersions prepared by γ radiation. Biomacromolecules. 11 Mar 2013; 14(3): 688-98.

Liu R, Wang S, Sun L, Fang S, Wang J, Huang X, You Z, He X, Liu C. A novel cationic nanostructured lipid carrier for improvement of ocular bioavailability: Design, optimization, in vitro and in vivo evaluation. Journal of Drug Delivery Science and Technology. 1 Jun 2016; 33: 28-36.

Look M, Stern E, Wang QA, DiPlacido LD, Kashgarian M, Craft J, Fahmy TM. Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice. The Journal of clinical investigation. 1 Apr 2013; 123(4): 1741-9.

Adhikari B, Cherukuri S, Reddy CS, Haranath C, Bhatta HP, Naidu Inturi R. Recent advances in nanogels drug delivery systems. World Journal of Pharmacy and Pharmaceutical Sciences. 2016; 5(9): 505-30.

McDonough JA, Persyn JT, Nino JA, Dixon H, Boland EJ, Wang Z, Putcha L. Microcapsule-gel formulation of promethazine HCl for controlled nasal delivery: A motion sickness medication. Journal of microencapsulation. 1 Jan 2007; 24(2): 109-16.

Downloads

Published

2021-07-30

How to Cite

Ghaywat, S. D. ., Mate, P. S. ., Parsutkar, Y. M. ., Chandimeshram, A. D. ., & Umekar, M. J. . (2021). Overview of nanogel and its applications. GSC Biological and Pharmaceutical Sciences, 16(1), 040–061. https://doi.org/10.30574/gscbps.2021.16.1.0196

Issue

Section

Editorial