The gut microbiome in Huntington disease: A review

Authors

  • Rhutik S Patil Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India.
  • Sanjoli G Vyas Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India.
  • Wasiyoddin T Quazi Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India.
  • Harshwardhan J Tembhurnikar Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India.
  • Priya S Milmile Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India.
  • Milind J Umekar Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India.

DOI:

https://doi.org/10.30574/gscbps.2021.15.3.0180

Keywords:

Huntington's disease, Gut-Brain Axis, Neurodegenerative Disease, Gut-Microbiota

Abstract

Huntington's disease (HD) is a neurological disease caused by a trinucleotide repeat increase in the huntingtin (htt) gene, which is widely expressed in the brain and peripheral tissues. While many studies have focused on the cognitive, psychological, and motor symptoms of HD, however, the scope of peripheral pathology and its possible impact on central symptoms has received less attention. We hypothesised that because disruption of the gastrointestinal microbiota (gut dysbiosis) has lately been identified in a number of neurological and psychiatric illnesses, it might also occur in HD. In the HD gut microbiota, bacteriodetes increased whereas firmicutes decreased proportionally. Despite a larger food consumption, the gut dysbiosis was associated with a reduction in body weight growth. The presence of greater faecal water content in hd was also linked to a shift in the gut microenvironment. In this review, we present an update on the association between microbiome and brain function as it relates to huntington's disease.

Metrics

Metrics Loading ...

References

Sampson, t.r. and mazmanian, s.k., 2015. Control of brain development, function, and behavior by the microbiome. Cell host & microbe, 17[5], pp.565-576.

Rutayisire, e., huang, k., liu, y. And tao, f., 2016. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review. Bmc gastroenterology, 16[1], pp.1-12.

Ley, r.e., peterson, d.a. and gordon, j.i., 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 124[4], pp.837-848.

O'hara, a.m. and shanahan, f., 2006. The gut flora as a forgotten organ. Embo reports, 7[7], pp.688-693.

Turnbaugh, p.j., ley, r.e., hamady, m., fraser-liggett, c.m., knight, r. And gordon, j.i., 2007. The human microbiome project. Nature, 449[7164], pp.804-810.

Huttenhower, c., gevers, d., knight, r., abubucker, s., badger, j.h., chinwalla, a.t., creasy, h.h., earl, a.m., fitzgerald, m.g., fulton, r.s. and giglio, m.g., 2012. Structure, function and diversity of the healthy human microbiome. Nature, 486[7402], p.207.

Cryan, j.f. and dinan, t.g., 2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature reviews neuroscience, 13[10], pp.701-712.

Tracey, k.j., 2009. Reflex control of immunity. Nature reviews immunology, 9[6], pp.418-428.

Rehfeld, j.f., 2004. A centenary of gastrointestinal endocrinology. Hormone and metabolic research, 36[11/12], pp.735-741.

Furness, j.b., rivera, l.r., cho, h.j., bravo, d.m. and callaghan, b., 2013. The gut as a sensory organ. Nature reviews gastroenterology & hepatology, 10[12], p.729.

Little, t.j., horowitz, m. And feinle-bisset, c., 2007. Modulation by high-fat diets of gastrointestinal function and hormones associated with the regulation of energy intake: implications for the pathophysiology of obesity. The american journal of clinical nutrition, 86[3], pp.531-541.

Bravo, j.a., forsythe, p., chew, m.v., escaravage, e., savignac, h.m., dinan, t.g., bienenstock, j. And cryan, j.f., 2011. Ingestion of lactobacillus strain regulates emotional behavior and central gaba receptor expression in a mouse via the vagus nerve. Proceedings of the national academy of sciences, 108[38], pp.16050-16055.

Burokas, a., moloney, r.d., dinan, t.g. and cryan, j.f., 2015. Microbiota regulation of the mammalian gut–brain axis. Advances in applied microbiology, 91, pp.1-62.

Barrett, e., ross, r.p., o'toole, p.w., fitzgerald, g.f. and stanton, c., 2012. Γ‐aminobutyric acid production by culturable bacteria from the human intestine. Journal of applied microbiology, 113[2], pp.411-417.

Reigstad, c.s., salmonson, c.e., iii, j.f.r., szurszewski, j.h., linden, d.r., sonnenburg, j.l., farrugia, g. And kashyap, p.c., 2015. Gut microbes promote colonic serotonin production through an effect of short‐chain fatty acids on enterochromaffin cells. The faseb journal, 29[4], pp.1395-1403.

Brestoff, j.r. and artis, d., 2013. Commensal bacteria at the interface of host metabolism and the immune system. Nature immunology, 14[7], pp.676-684.

Byrne, c.s., chambers, e.s., morrison, d.j. and frost, g., 2015. The role of short chain fatty acids in appetite regulation and energy homeostasis. International journal of obesity, 39[9], pp.1331-1338. Azzam i, gilad s, limor r, stern n, greenman y. Ghrelin stimulation by hypothalamic-pituitary-adrenal axis activation depends on increasing cortisol levels. Endocr connect. 2017; 6[8]: 847-855.

Azzam i, gilad s, limor r, stern n, greenman y. Ghrelin stimulation by hypothalamic-pituitary-adrenal axis activation depends on increasing cortisol levels. Endocr connect. 2017; 6[8]: 847-855.

Picciotto, m.r., 2008. Galanin–25 years with a multitalented neuropeptide. Cellular and molecular life sciences, 65[12], pp.1872-1879.

Appleton, j., 2018. The gut-brain axis: influence of microbiota on mood and mental health. Integrative medicine: a clinician's journal, 17[4], p.28.

Dupont, h. l., 2014. Evidence for the role of gut microbiota in irritable bowel syndrome and its potential influence on therapeutic targets. Alimentary pharmacology & therapeutics, 39[10], pp.1033-1042.

Kennedy, p.j., cryan, j.f., dinan, t.g. and clarke, g., 2014. Irritable bowel syndrome: a microbiome-gut-brain axis disorder?. World journal of gastroenterology: wjg, 20[39], p.14105.

Koloski, n.a., jones, m., kalantar, j., weltman, m., zaguirre, j. And talley, n.j., 2012. The brain–gut pathway in functional gastrointestinal disorders is bidirectional: a 12-year prospective population-based study. Gut, 61[9], pp.1284-1290.

Morgan, m.y., 1991. The treatment of chronic hepatic encephalopathy. Hepato-gastroenterology, 38[5], pp.377-387.

Simrén, m., barbara, g., flint, h.j., spiegel, b.m., spiller, r.c., vanner, s., verdu, e.f., whorwell, p.j. and zoetendal, e.g., 2013. Intestinal microbiota in functional bowel disorders: a rome foundation report. Gut, 62[1], pp.159-176.

Kanhere HS, Rahangdale YU, Bodele AS, Wadhwani DI, Ghoshewar AR, Karande SP. Neurological disorders associated with impaired gut microbiota. GSC Biological and Pharmaceutical Sciences. 2021;15(2):029-39.

Suganya k, koo bs. Gut–brain axis: role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial and immune pathways to improve brain functions. International journal of molecular sciences. 2020; 21[20]: 7551.

Ley, r.e., hamady, m., lozupone, c., turnbaugh, p.j., ramey, r.r., bircher, j.s., schlegel, m.l., tucker, t.a., schrenzel, m.d., knight, r. And gordon, j.i., 2008. Evolution of mammals and their gut microbes. Science, 320[5883], pp.1647-1651.

Ilieva, h. And maragakis, n.j., 2017. Motoneuron disease: basic science. Neurodegenerative diseases, pp.163-190.

Goldman, j.g. and postuma, r., 2014. Premotor and non-motor features of parkinson’s disease. Current opinion in neurology, 27[4], p.434.

Bates, g., harper, p.s. and jones, l. Eds., 2002. Huntington's disease [no. 45]. Oxford university press, usa.

Pearson, j.s., petersen, m.c., lazarte, j.a., blodgett, h.e. and kley, i.b., 1955, august. An educational approach to the social problem of huntington's chorea. In proceedings of the staff meetings. Mayo clinic [vol. 30, no. 16, pp. 349-357].

Folstein, s.e., chase, g.a., wahl, w.e., mcdonnell, a.m. and folstein, m.f., 1987. Huntington disease in maryland: clinical aspects of racial variation. American journal of human genetics, 41[2], p.168.

Stevanin, g., camuzat, a., holmes, s.e., julien, c., sahloul, r., dode, c., hahn-barma, v., ross, c.a., margolis, r.l., durr, a. And brice, a., 2002. Cag/ctg repeat expansions at the huntington’s disease–like 2 locus are rare in huntington’s disease patients. Neurology, 58[6], pp.965-967.

Magazi, d.s., krause, a., bonev, v., moagi, m., iqbal, z., dludla, m. And van der meyden, c.h., 2008. Huntington's disease: genetic heterogeneity in black african patients. South african medical journal, 98[3], pp.200-203.

Wexler, n.s., 2004. Venezuelan kindreds reveal that genetic and environmental factors modulate huntington's disease age of onset. Proceedings of the national academy of sciences, 101[10], pp.3498-3503.

Squitieri, f. And jankovic, j., 2012. Huntington's disease: how intermediate are intermediate repeat lengths?.

Seong, i.s., ivanova, e., lee, j.m., choo, y.s., fossale, e., anderson, m., gusella, j.f., laramie, j.m., myers, r.h., lesort, m. And macdonald, m.e., 2005. Hd cag repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Human molecular genetics, 14[19], pp.2871-2880.

Huntington, g., 1872. On chorea.

Folstein, s.e., 1989. The psychopathology of huntington's disease. The journal of nervous and mental disease, 177[10], p.645.

Kieburtz, k., penney, j.b., corno, p., ranen, n., shoulson, i., feigin, a., abwender, d., greenarnyre, j.t., higgins, d., marshall, f.j. and goldstein, j., 2001. Unified huntington’s disease rating scale: reliability and consistency. Neurology, 11[2], pp.136-142.

Hogarth, p., kayson, e., kieburtz, k., marder, k., oakes, d., rosas, d., shoulson, i., wexler, n.s., young, a.b., zhao, h. And united states–venezuela huntington's disease collaborative research group, 2005. Interrater agreement in the assessment of motor manifestations of huntington's disease. Movement disorders, 20[3], pp.293-297.

Tabrizi, s.j., langbehn, d.r., leavitt, b.r., roos, r.a., durr, a., craufurd, d., kennard, c., hicks, s.l., fox, n.c., scahill, r.i. and borowsky, b., 2009. Biological and clinical manifestations of huntington's disease in the longitudinal track-hd study: cross-sectional analysis of baseline data. The lancet neurology, 8[9], pp.791-801.

Butters, n., wolfe, j., martone, m., granholm, e. And cermak, l.s., 1985. Memory disorders associated with huntington's disease: verbal recall, verbal recognition and procedural memory. Neuropsychologia, 23[6], pp.729-743.

Pillon, b., dubois, b., ploska, a. And agid, y., 1991. Severity and specificity of cognitive impairment in alzheimer's, huntington's, and parkinson's diseases and progressive supranuclear palsy. Neurology, 41[5], pp.634-643.

Duff, k., paulsen, j.s., beglinger, l.j., langbehn, d.r., stout, j.c. and predict-hd investigators of the huntington study group, 2007. Psychiatric symptoms in huntington’s disease before diagnosis: the predict-hd study. Biological psychiatry, 62[12], pp.1341-1346.

Morales, l.m., estevez, j., suarez, h., villalobos, r., chacin de bonilla, l. And bonilla, e., 1989. Nutritional evaluation of huntington disease patients. The american journal of clinical nutrition, 50[1], pp.145-150.

Pratley, r.e., salbe, a.d., ravussin, e. And caviness, j.n., 2000. Higher sedentary energy expenditure in patients with huntington's disease. Annals of neurology, 47[1], pp.64-70.

Underwood, b.r., broadhurst, d., dunn, w.b., ellis, d.i., michell, a.w., vacher, c., mosedale, d.e., kell, d.b., barker, r.a., grainger, d.j. and rubinsztein, d.c., 2006. Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain, 129[4], pp.877-886.

Popovic, v., svetel, m., djurovic, m., petrovic, s., doknic, m., pekic, s., miljic, d., milic, n., glodic, j., dieguez, c. And casanueva, f.f., 2004. Circulating and cerebrospinal fluid ghrelin and leptin: potential role in altered body weight in huntington's disease. European journal of endocrinology, 151[4], pp.451-456.

Leavitt, b.r., guttman, j.a., hodgson, j.g., kimel, g.h., singaraja, r., vogl, a.w. and hayden, m.r., 2001. Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. The american journal of human genetics, 68[2], pp.313-324.

Van raamsdonk, j.m., murphy, z., selva, d.m., hamidizadeh, r., pearson, j., petersén, ǻ., björkqvist, m., muir, c., mackenzie, i.r., hammond, g.l. and vogl, a.w., 2007. Testicular degeneration in huntington disease. Neurobiology of disease, 26[3], pp.512-520.

Mastromauro, c.a., meissen, g.j., cupples, l.a., kiely, d.k., berkman, b. And myers, r.h., 1989. Estimation of fertility and fitness in huntington disease in new england. American journal of medical genetics, 33[2], pp.248-254.

Foster, j.a. and neufeld, k.a.m., 2013. Gut–brain axis: how the microbiome influences anxiety and depression. Trends in neurosciences, 36[5], pp.305-312.

Golubeva, a.v., joyce, s.a., moloney, g., burokas, a., sherwin, e., arboleya, s., flynn, i., khochanskiy, d., moya-pérez, a., peterson, v. And rea, k., 2017. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. Ebiomedicine, 24, pp.166-178.

Scheperjans, f., aho, v., pereira, p.a., koskinen, k., paulin, l., pekkonen, e., haapaniemi, e., kaakkola, s., eerola‐rautio, j., pohja, m. And kinnunen, e., 2015. Gut microbiota are related to parkinson's disease and clinical phenotype. Movement disorders, 30[3], pp.350-358.

Vogt, n.m., kerby, r.l., dill-mcfarland, k.a., harding, s.j., merluzzi, a.p., johnson, s.c., carlsson, c.m., asthana, s., zetterberg, h., blennow, k. And bendlin, b.b., 2017. Gut microbiome alterations in alzheimer’s disease. Scientific reports, 7[1], pp.1-11.

Hsiao, e.y., mcbride, s.w., hsien, s., sharon, g., hyde, e.r., mccue, t., codelli, j.a., chow, j., reisman, s.e., petrosino, j.f. and patterson, p.h., 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155[7], pp.1451-1463.

Sampson, t.r., debelius, j.w., thron, t., janssen, s., shastri, g.g., ilhan, z.e., challis, c., schretter, c.e., rocha, s., gradinaru, v. And chesselet, m.f., 2016. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell, 167[6], pp.1469-1480.

Zheng, p., zeng, b., zhou, c., liu, m., fang, z., xu, x., zeng, l., chen, j., fan, s., du, x. And zhang, x., 2016. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Molecular psychiatry, 21[6], pp.786-796.

Beal, m.f., matson, w.r., swartz, k.j., gamache, p.h. and bird, e.d., 1990. Kynurenine pathway measurements in huntington's disease striatum: evidence for reduced formation of kynurenic acid. Journal of neurochemistry, 55[4], pp.1327-1339.

Verwaest, k.a., vu, t.n., laukens, k., clemens, l.e., nguyen, h.p., van gasse, b., martins, j.c., van der linden, a. And dommisse, r., 2011. 1h nmr based metabolomics of csf and blood serum: a metabolic profile for a transgenic rat model of huntington disease. Biochimica et biophysica acta [bba]-molecular basis of disease, 1812[11], pp.1371-1379.

Van der burg, j.m., winqvist, a., aziz, n.a., maat-schieman, m.l., roos, r.a., bates, g.p., brundin, p., björkqvist, m. And wierup, n., 2011. Gastrointestinal dysfunction contributes to weight loss in huntington's disease mice. Neurobiology of disease, 44[1], pp.1-8.

Giloteaux, l., goodrich, j.k., walters, w.a., levine, s.m., ley, r.e. and hanson, m.r., 2016. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome, 4[1], pp.1-12.

Vogt, n.m., kerby, r.l., dill-mcfarland, k.a., harding, s.j., merluzzi, a.p., johnson, s.c., carlsson, c.m., asthana, s., zetterberg, h., blennow, k. And bendlin, b.b., 2017. Gut microbiome alterations in alzheimer’s disease. Scientific reports, 7[1], pp.1-11.

Chakraborti, c.k., 2015. New-found link between microbiota and obesity. World journal of gastrointestinal pathophysiology, 6[4], p.110.

Den besten, g., van eunen, k., groen, a.k., venema, k., reijngoud, d.j. and bakker, b.m., 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid research, 54[9], pp.2325-2340.

Haro, c., rangel-zúñiga, o.a., alcalá-díaz, j.f., gómez-delgado, f., pérez-martínez, p., delgado-lista, j., quintana-navarro, g.m., landa, b.b., navas-cortés, j.a., tena-sempere, m. And clemente, j.c., 2016. Intestinal microbiota is influenced by gender and body mass index. Plos one, 11[5], p.e0154090.

Org, e., mehrabian, m., parks, b.w., shipkova, p., liu, x., drake, t.a. and lusis, a.j., 2016. Sex differences and hormonal effects on gut microbiota composition in mice. Gut microbes, 7[4], pp.313-322.

Brooks, s.p., janghra, n., workman, v.l., bayram-weston, z., jones, l. And dunnett, s.b., 2012. Longitudinal analysis of the behavioural phenotype in r6/1 [c57bl/6j] huntington's disease transgenic mice. Brain research bulletin, 88[2-3], pp.94-103.

Farhadi, f., vosoughi, k., shahidi, g.a., delbari, a., lökk, j. And fereshtehnejad, s.m., 2017. Sexual dimorphism in parkinson’s disease: differences in clinical manifestations, quality of life and psychosocial functioning between males and females. Neuropsychiatric disease and treatment, 13, p.329.

Jiao, s.s., bu, x.l., liu, y.h., zhu, c., wang, q.h., shen, l.l., liu, c.h., wang, y.r., yao, x.q. and wang, y.j., 2016. Sex dimorphism profile of alzheimer’s disease-type pathologies in an app/ps1 mouse model. Neurotoxicity research, 29[2], pp.256-266.

Kessler, r.c., mcgonagle, k.a., zhao, s., nelson, c.b., hughes, m., eshleman, s., wittchen, h.u. and kendler, k.s., 1994. Lifetime and 12-month prevalence of dsm-iii-r psychiatric disorders in the united states: results from the national comorbidity survey. Archives of general psychiatry, 51[1], pp.8-19.

Li, r. And singh, m., 2014. Sex differences in cognitive impairment and alzheimer’s disease. Frontiers in neuroendocrinology, 35[3], pp.385-403.

Mo, c., pang, t.y., ransome, m.i., hill, r.a., renoir, t. And hannan, a.j., 2014. High stress hormone levels accelerate the onset of memory deficits in male huntington's disease mice. Neurobiology of disease, 69, pp.248-262.

Wood, n.i., goodman, a.o., van der burg, j.m., gazeau, v., brundin, p., björkqvist, m., petersén, å., tabrizi, s.j., barker, r.a. and morton, a.j., 2008. Increased thirst and drinking in huntington's disease and the r6/2 mouse. Brain research bulletin, 76[1-2], pp.70-79.

Péronnet, f., mignault, d., du souich, p., vergne, s., le bellego, l., jimenez, l. And rabasa-lhoret, r., 2012. Pharmacokinetic analysis of absorption, distribution and disappearance of ingested water labeled with d 2 o in humans. European journal of applied physiology, 112[6], pp.2213-2222.

Roager, h.m., hansen, l.b., bahl, m.i., frandsen, h.l., carvalho, v., gøbel, r.j., dalgaard, m.d., plichta, d.r., sparholt, m.h., vestergaard, h. And hansen, t., 2016. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nature microbiology, 1[9], pp.1-9.

Vandeputte, d., falony, g., vieira-silva, s., tito, r.y., joossens, m. And raes, j., 2016. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut, 65[1], pp.57-62.

Liu, s., da cunha, a.p., rezende, r.m., cialic, r., wei, z., bry, l., comstock, l.e., gandhi, r. And weiner, h.l., 2016. The host shapes the gut microbiota via fecal microrna. Cell host & microbe, 19[1], pp.32-43.

Van niel, g., raposo, g., candalh, c., boussac, m., hershberg, r., cerf–bensussan, n. And heyman, m., 2001. Intestinal epithelial cells secrete exosome–like vesicles. Gastroenterology, 121[2], pp.337-349.

Colombo, m., raposo, g. And théry, c., 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual review of cell and developmental biology, 30, pp.255-289.

Hoss, a.g., labadorf, a., latourelle, j.c., kartha, v.k., hadzi, t.c., gusella, j.f., macdonald, m.e., chen, j.f., akbarian, s., weng, z. And vonsattel, j.p., 2015. Mir-10b-5p expression in huntington’s disease brain relates to age of onset and the extent of striatal involvement. Bmc medical genomics, 8[1], pp.1-14.

Tanut, k., 2014. Transgenic non-human primate huntingtion's disease model for drug discovery research and microrna-196a therapy [doctoral dissertation, school of biotechnology institute of agricultural technology suranaree university of technology].

Packer, a.n., xing, y., harper, s.q., jones, l. And davidson, b.l., 2008. The bifunctional microrna mir-9/mir-9* regulates rest and corest and is downregulated in huntington's disease. Journal of neuroscience, 28[53], pp.14341-14346.

Kong, g., lê cao, k.a., judd, l.m., li, s., renoir, t. And hannan, a.j., 2020. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of huntington's disease. Neurobiology of disease, 135, p.104268.

Kshirsagar PB, Kanhere HS, Bansinge PC, Rathod SK, Khandare VS, Das RK. Huntington’s disease: Pathophysiology and therapeutic intervention. GSC Biological and Pharmaceutical Sciences. 2021;15(2):171-84.

Downloads

Published

2021-06-30

How to Cite

Patil, R. S. ., Vyas, S. G. ., Quazi, W. T. ., Tembhurnikar, H. J. ., Milmile, P. S. ., & Umekar, M. J. . (2021). The gut microbiome in Huntington disease: A review. GSC Biological and Pharmaceutical Sciences, 15(3), 317–326. https://doi.org/10.30574/gscbps.2021.15.3.0180

Issue

Section

Review Article