Effect of salinity on the physiology of peanut variety 73-33 (Arachis hypogaea L.)
DOI:
https://doi.org/10.30574/gscbps.2021.17.1.0285Keywords:
Peanut, Chlorophyll, Growth, Germination, NaClAbstract
Peanut (Arachis hypogaea, L.) is an annual papilionaceous oilseed legume cultivated on nearly 25 million hectares in tropical and temperate zones due to its remarkable plasticity to temperature and water requirements. In Senegal, peanut is produced in rural areas where they are the main source of agricultural income. Variety 73-33 is cultivated in the river valley and the groundnut basin is subject to the influence of salinization affecting four of Senegal's ecogeographic zones.
Studies conducted with randomized full-block experimental set-up in the laboratory and under semi-controlled greenhouse conditions have shown the effect of different concentrations of NaCl on the peanut variety 73-33: 0mM; 25mM; 50mM; 100mM; 200mM; 300mM; 400mM; 500mM for germination and 0mM; 25mM; 50mM; 100mM for growth growth and chlorophyll production. The parameters which were measured are: the germination rate (ten days after sowing), the number of nodules, the number of gynophores, the dry biomass and the production of chlorophyll at twenty, forty and seventy-five days after sowing.
Germination is significantly negatively affected from 400mM.
Twenty days after sowing there is a significant difference between the control and the other treatments for the production of chlorophyll a (Chla) only.
Forty days after sowing, the production of chlorophyll a and total chlorophyll shows a very highly significant difference between all the treatments. The dry biomass only shows a significant difference from 100mM.
Seventy-five days after sowing, the dry biomass and the number of gynophores are significantly reduced by the salinity from 25mM.
Metrics
References
Schilling R. Données agronomiques de base sur la culture arachidière. Oléagineux, Corps Gras, Lipides. 2001; 8(3): 230-6.
Noba K, Ngom A, Guèye M, Bassène C, Kane M, Diop I, Ndoye F, Mbaye MS, Kane A, Ba AT. L’arachide au Sénégal : État des lieux, contraintes et perspectives pour la relance de la filière. OCL. 2014; 21(2): D205.
Clavel D, Drame NK, Diop ND, Zuily-Fodil Y. Adaptation à la sécheresse et création variétale : Le cas de l’arachide en zone sahélienne : Première partie : revue bibliographique. Oléagineux, Corps gras, Lipides. 2005; 12(3): 248‑260.
Bockelée-Morvan A. Oléagineux. Février. 1983; 38(2).
Clavel D, Ndoye O. La carte variétale de l’arachide au Sénégal. Agriculture et développement. 1997; (14): 41-46.
Cirad G. Mémento de l'Agronome. Nouvelle édition. 2002; 16-98.
Direction des Parcs Nationaux. Quatrième Rapport National sur la Mise en Œuvre de la Convention sur la Diversité Biologique (République du Sénégal). République du Sénégal ; République du Sénégal. 2010; 133.
Thiam A, Samba S, Noba K, Ndiaye J, Diatta M, Wade M. Etude de la variation de la végétation en milieux salé et acide au Sénégal. International Journal of Biological and Chemical Sciences. 2015; 9(1): 155.
Ndiaye A, Faya E, Touré M. Effets du stress salin sur la germination des graines de Gossypium hirsutum L. Journal of Applied Biosciences. 2014; 80(1): 7081.
Xie J, Dai Y, Mu H, De Y, Chen H, Wu Z, Yu L, Ren W. Physiological and biochemical responses to NaCl salinity stress in three roegneria (poaceae) species. Pak. J. Bot. 2016; 48(6): 2215‑2222.
Collin P. L’adaptation au milieu chez les plantes vasculaires. L’Année Biologique. 2001; 40: 21‑42.
Fahramand M, Mahmoody M, Keykha A, Noori M, Rigi K. Influence of abiotic stress on proline, photosynthetic enzymes and growth. Int Res J Appl Basic Sci. 2014; 8(3): 257‑265.
ANSTS (Académie Nationale des Sciences et Techniques du Sénégal). Restauration et valorisation des terres salées du Sénégal. 2019; 56.
Benidire L, Daoui K, Fatemi ZA, Achouak W, Bouarab L, Oufdou K. Effet du stress salin sur la germination et le développement des plantules de Vicia faba L. (Effect of salt stress on germination and seedling of Vicia faba L.). Journal of Materials and Environmental Science. 2015; 6(3): 840‑851.
Ly M, Kumar D, Diouf M, Nautiyal S, Diop T. Effet de la salinité sur la croissance et la production de biomasse de deux provenances de Jatropha curcas L. cultivés en serre. International Journal of Biological and Chemical Sciences. 2014; 8(1): 46.
Ntare BR, Diallo AT, Ndjeunga J, Waliyar F. Manuel sur les techniques de production de semences d’arachide. ICRISAT, CFC, FAO. 2003; 28.
Faye E, Camara M, Toure M, Mbaye A. Evaluation et amélioration du comportement de Atriplex lentiformis (Torr.) S. Watson en milieux salés au Sénégal. International Journal of Biological and Chemical Sciences. 2015; 8(4): 1697.
Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology. 1949; 24(1): 1‑15.
Dangue A, Gueye N, Diallo AT, Sarre IC, Ndiaye MAF, Diop, TA. Effet de la salinité sur la germination graines et la croissance des semis de treize cultivars africains de sésame (Sesamum indicum L.). European Scientific Journal. 2020; 16(15): 200‑211.
Lepengue AN, Mouaragadja I, Cherif M, M’Batchi B. Effet du chlorure de sodium (NaCl) sur la croissance de la roselle au Gabon. Afrique SCIENCE. 2009; 5(3): 97‑110.
Bahrani A, Joo MH. Response of Some Wheat (Triticum aestivum L.) Genotypes to Salinity at Germination and Early Seedling Growth Stages. World Applied Sciences Journal. 2021; 16(4): 599‑609.
Thouraya R, Imen I, Imen H, Riadh I, Ahlem B, Hager J. Effet du stress salin sur le comportement physiologique et métabolique de trois variétés de piment (Capsicum annuum L.). Journal of Applied Biosciences. 2013; 66(0): 5060‑5069.
Taïbi K, Taïbi F, Ait Abderrahim L, Ennajah A, Belkhodja M, Mulet JM. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany. 2016; 105: 306‑312.
Dangue A, Ndiaye MAF, Guèye N, Diallo AT, Diop TA. Effect of sodium chloride on the growth and physiology of four African varieties of Sesamum indicum L. Am. J. Innov. Res. Appl. Sci. 2020; 10(6): 250‑257.
Tariq A, Shahbaz M. Glycinebetaine induced modulation in oxidative defense system and mineral nutrients sesame (Sesamum indicum L.) under saline regimes. Pakistan Journal of Botany. 2020; 52(3): 775‑782.
Ben Ahmed H, Manaa A, Zid E. Tolérance à la salinité d’une poaceae à cycle court : La sétaire (Setaria verticillata L.). Comptes Rendus Biologies. 2008; 331(2): 164‑170.
Giuffrida F, Martorana M, Leonardi C. How sodium chloride concentration in the nutrient solution influences the mineral composition of tomato leaves and fruits. HortScience. 2009; 44(3): 707‑711.
Bekele A, Besufekad Y, Adugna S, Yinur D. Screening of selected accessions of Ethiopian sesame (Sesamum indicum L.) for salt tolerance. Biocatalysis and Agricultural Biotechnology. 2017; 9: 82‑94.
Srivastava N, Vadez V, Narayan Nigam SD, Upadhyaya H, Narasu L. Screening Groundnut (Arachis hypogaea L.) Germplasm for Salinity Tolerance. Journal of Genetic Resources. 2018; 4(2): 130-140.
Teggar N. Etude de l'effet du stress salin sur la nodulation et quelques paramètres biochimiques et morphologiques de la lentille (Lens culinaris L.). Mémoire de magistère, Université d’Oran. 2015; 98.
Saadallah K, Drevon JJ, Abdelly C. Nodulation et croissance nodulaire chez le haricot (Phaseolus vulgaris) sous contrainte saline. Agronomie. 2001; 21(6-7): 627-634.
Shahid M, Ameen F, Maheshwari HS, Ahmed B, AlNadhari S, Khan MS. Colonization of Vigna radiata by a halotolerant bacterium Kosakonia sacchari improves the ionic balance, stressor metabolites, antioxidant status and yield under NaCl stress. Applied Soil Ecology. 2020; 158: 103809, 1‑14.
El-Iklil Y, Karrou M, Mrabet R, Benichou M. Effet du stress salin sur la variation de certains metabolites chez Lycopersicon esculentum et Lycopersicon sheesmanii. Canadian Journal of Plant Science. 2002; 82(1): 177‑183.
Gomes MAC, Pestana IA, Santa-Catarina C, Hauser-Davis RA, Suzuki MS. Salinity effects on photosynthetic pigments, proline, biomass and nitric oxide in Salvinia auriculata Aubl. Acta Limnologica Brasiliensia. 2017; 29(9): 13.
Belfakih M, Ibriz M, Zouahri A. Effet de la salinité sur les paramètres morphophysiologiques de deux variétés de bananier (Musa acuminata L). Journal of Applied Biosciences. 2013; 70(1): 5652.
Diallo B, Samba SAN, Sané D. Effets de champignons MA sur la croissance et le développement de plants de ricin élevés sous contrainte saline en conditions semi-contrôlées. Revue des Energies Renouvelables. 2016; 19: 59–68.
Bouassaba K, Chougui S. Effet du stress salin sur le comportement biochimique et anatomique chez deux variétés de piment (Capsicum Annuum L.) À Mila /Algérie. European Scientific Journal, ESJ. 2018; 14(15): 159‑174.
Al-Khaliel AS. Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae. Plant, Soil and Environment. 2010; 56(7): 318‑324.
Beltrano J, Ruscitti M, Arango MC, Ronco M. Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. Journal of Soil Science and Plant Nutrition. 2013; 13(1): 123‑141.
Reddy MP, Vora AB. Salinity induced changes in pigment composition and chlorophyllase activity of wheat. Indian I. Plant Phy,Iol., XXIX. 1986; (4): 331‑334.
Sivasankaramoorthy S. Effect of NaCl salinity on germination, growth and photosynthetic pigments of Cajanus cajan L.. International Journal of Research in Plant Science. 2013; 3(4): 68‑71.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.