Behavior of fluorescent Pseudomonas under different concentrations of heavy metals (Zn and Cu)

Authors

  • Oubeidillah Youssoufa Ali Department of Plant Biology, Mushroom Biotechnology Laboratory, Faculty of Science and Technology, Cheikh Anta Diop University of Dakar, Dakar BP 5005, Senegal.
  • Adiouma Dangue Department of Plant Biology, Mushroom Biotechnology Laboratory, Faculty of Science and Technology, Cheikh Anta Diop University of Dakar, Dakar BP 5005, Senegal.
  • Demba Diaw Department of Plant Biology, Mushroom Biotechnology Laboratory, Faculty of Science and Technology, Cheikh Anta Diop University of Dakar, Dakar BP 5005, Senegal.
  • Mame Arama Fall Ndiaye Department of Plant Biology, Mushroom Biotechnology Laboratory, Faculty of Science and Technology, Cheikh Anta Diop University of Dakar, Dakar BP 5005, Senegal.
  • Tahir Abdoulaye Diop Department Higher School of Agricultural and Food Sciences, Amadou Mahtar MBOW University of Dakar, Diamniadio, Senegal.

DOI:

https://doi.org/10.30574/gscbps.2022.18.1.0048

Keywords:

Pseudomonas, Heavy metals, Tomato, Onion, Eggplant

Abstract

The use of chemical fertilizers has resulted in the depletion of soils in mineral elements and telluric microorganisms. Thus, for an improvement in crop growth, the exploitation of telluric microorganisms such as Pseudomonas can be an alternative.

Laboratory work has made it possible to isolate strains of Pseudomonas from the rhizospheres of tomato, eggplant and onion. These strains were also tested in the presence of different concentrations of certain metals (CuSO4 and ZnSO4 (0, 1, 3, 4, 5 and 6 mmol/l).

The tests carried out in the laboratory in the presence of Cu and Zn revealed a very significant reduction in the number of colonies of the strains of Pseudomonas for the concentrations of 5 and 6 mmol/l.

The results showed better zinc tolerance for both tomato and onion rhizosphere strains. In the presence of Cu, the strain isolated from tomato rhizosphere shows more tolerance to heavy metals. These results made it possible to isolate different strains of Pseudomonas and to specify their tolerance thresholds for heavy metals.

Metrics

Metrics Loading ...

References

Baize D. Teneurs totales en « métaux lourds » dans les sols français: résultats généraux du programme ASPITET. Le Courrier de l'Environnement de l'INRA. 2000; (40): 39-54.

Adam S, Edorh PA, Totin H, Koumolou L, Amoussou E, Aklikokou K, Boko M. Pesticides et métaux lourds dans l’eau de boisson, les sols et les sédiments de la ceinture cotonnière de Gogounou, Kandi et Banikoara (Bénin). International Journal of Biological and Chemical Sciences. 2010; 4(4).

Nouri M, Haddioui A. Les techniques de dépollution des sols contaminés par les métaux lourds: une revue (The remediation techniques of heavy metals contaminated soils: a review). Maghrebian Journal of Pure and Applied Science. 2016; 2(2): 47- 58.

Diaw D, Fall-Ndiaye MA, Ali OY, Sare IC, Diop TA. Effet de la salinité sur la densité des isolats de Pseudomonas spp fluorescents de rhizosphère de plants de tomate, d’aubergine et d’oignon au Sénégal. International Journal of Biological and Chemical Sciences. 2018; 12(4): 1914-1919.

Lurthy T. Interactions Pisum sativum–Pseudomonas: conséquences sur la nutrition en fer, la croissance et l’immunité de la plante hôte. Biodiversité et Ecologie. Université Bourgogne Franche- Comté, 2020. Français. NNT. 2020; 294.

Tou-dalill I. Bioremédiation du Cd, Zn et Cu, par deux bactéries rhizosphériques. Université des Sciences et de la Technologie Houari Boumediene. 2013; 72.

Wintz H, Fox T, Vulpe C. Reponses of plants to iron, zinc and copper deficiencies. Biochemical Society Transactions. 2002; 30(4): 766-768.

Cloutier-Hurteau B. Rôle des microorganismes sur la spéciation du Cu, Zn et Al dans la rhizosphère de sols forestiers. Université de Montréal. 2009; 234.

El Idrissi L. Cytotoxicité du cadmium, du plomb et du mercure et caractérisation du transport membranaire de cadmium dans les cellules alvéolaires (A549) et bronchiolaires (H441), Université du Québec à Montréal, Canada. 2009; 88.

Ferret C. Role of fluorescent Pseudomonas in the biodisponibility of metals contamining the soil minerals. Université de Strasbourg. 2012; 266.

Deshwal VK, Kumar P. Effect of salinity on growth and PGPR activity of Pseudomonas. Journal of Academia and Industrial Research. 2013; 2(6): 353-356.

Khan N, Bano A, Rahman MA, Guo J, Kang Z, Babar MA. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Scientific reports. 2019; 9(1): 1-19.

Lemanceau P. Effets bénéfiques de rhizobactéries sur les plantes : exemple des Pseudomonas spp fluorescents. Agronomie. 1992; 12(6): 413-437.

David BV, Chandrasehar G, Selvam PN. Pseudomonas fluorescens: a plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In Crop improvement through microbial biotechnology, Elsevier. 2018; 221-243.

Smits TH, Balada SB, Witholt B, Van Beilen JB. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. Journal of bacteriology. 2002; 184(6): 1733-1742.

Haahtela K, Helander I, Nurmiaho-Lassila EL, Sundman V. Morphological and physiological characteristics and lipopolysaccharide composition of N2-fixing (C2H2-reducing) root-associated Pseudomonas sp. Canadian journal of microbiology. 1983; 29(8): 874-880.

Lakhdari MB, Bennecer MZE. Etude de la résistance aux antibiotiques chez Pseudomonas aeruginosa. Université Larbi Ben M’hidi Oum El Bouaghi, Algérie. 2021; 43.

Meyer JM. Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Archives of microbiology. 2000; 174(3): 135-142.

Oulebsir-Mohandkaci H, Tihar-Benzina F, Belkacem CA, Belgrade AN. Recherche de molécules bioactives d’intérêt à partir d’une collection de souches bactériennes rhizosphèriques et étude de leur effet antifongique. Algerian Journal of Environmental Science and Technology. 2020; 6(3).

Shameer S, Prasad TNVKV. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regulation. 2018; 84(3): 603-615.

Farida BT, Hakima OMK, Sonia H, Fatma SH. Détermination et caractérisation des sidérophores synthétisés par quelques souches de Pseudomonas spp. fluorescents phytobénéfiques. Revue Nature et Technologie. 2021; 12(3): 17-30.

David S. Altération de déchets amiantés par des bactéries et des sidérophores en vue du développement d’un procédé de bioremédiation. [Doctoral dissertation, Strasbourg], Université de Strasbourg. 2019.

Samia MM. Localisation des déterminants de la suppression de quelques souches de Pseudomonas isolées de la rhizosphère de la pomme de terre. Thèse de doctorat en sciences, Université Ferhat Abbas de Sétif 1, Algérie. 2012; 189.

Rabhi N. Isolement de Pseudomonas spp. fluorescents d’un sol salé: Effet d’osmoprotecteurs naturels, Université Ferhat Abbas Sétif, Algérie. 2011; 110.

Boutamine S, Boumelta R. Impact des décharges sauvages sur les sols et les méthodes de remédiation, Université Med-Seddik Benyahia-Jijel. 2019; 45.

King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954; 44: 301-7.

Vivas A, Azcón R, Biró B, Barea JM, Ruiz-Lozano JM. Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Canadian journal of microbiology. 2003; 49(10): 577-588.

Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, King CJ, McArthur JV. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology. 2006; 8(9): 1510-1514.

Chen C, Belanger RR, Benhamou N, Paulitz TC. Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiological and Molecular Plant Pathology. 2006; 56(1): 13-23.

Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution. 2006; 139(2): 362-371.

Ndiaye M, Cavali E, Diop TA. Growth of mycorhized seedlings of a tropical gum tree in coper contaminated soil. 2012.

Downloads

Published

2022-04-14

How to Cite

Ali, O. Y. ., Dangue, A. ., Diaw, D. ., Ndiaye, M. A. F. ., & Diop, T. A. . (2022). Behavior of fluorescent Pseudomonas under different concentrations of heavy metals (Zn and Cu). GSC Biological and Pharmaceutical Sciences, 18(1), 146–152. https://doi.org/10.30574/gscbps.2022.18.1.0048

Issue

Section

Original Article